Differential evolution (DE) is a simple, yet efficient global optimization algorithm. As the standard DE and most of its variants operate in the continuous space, this paper presents a modified binary differential evolution algorithm (MBDE) to tackle the binary-coded optimization problems. A novel probability estimation operator inspired by the concept of distribution of estimation algorithm is developed, which enables MBDE to manipulate binary-valued solutions directly and provides better tradeoff between exploration and exploitation cooperated with the other operators of DE. The effectiveness and efficiency of MBDE is verified in application to numerical optimization problems. The experimental results demonstrate that MBDE outperforms the discrete binary DE, the discrete binary particle swarm optimization and the binary ant system in terms of both accuracy and convergence speed on the suite of benchmark functions.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten