Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2016

13.10.2016

A Modified Mechanical Threshold Stress Constitutive Model for Austenitic Stainless Steels

verfasst von: K. Sajun Prasad, Amit Kumar Gupta, Yashjeet Singh, Swadesh Kumar Singh

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a modified mechanical threshold stress (m-MTS) constitutive model. The m-MTS model incorporates variable athermal and dynamic strain aging (DSA) Components to accurately predict the flow stress behavior of austenitic stainless steels (ASS)-316 and 304. Under strain rate variations between 0.01-0.0001 s−1, uniaxial tensile tests were conducted at temperatures ranging from 50-650 °C to evaluate the material constants of constitutive models. The test results revealed the high dependence of flow stress on strain, strain rate and temperature. In addition, it was observed that DSA occurred at elevated temperatures and very low strain rates, causing an increase in flow stress. While the original MTS model is capable of predicting the flow stress behavior for ASS, statistical parameters point out the inefficiency of the model when compared to other models such as Johnson Cook model, modified Zerilli-Armstrong (m-ZA) model, and modified Arrhenius-type equations (m-Arr). Therefore, in order to accurately model both the DSA and non-DSA regimes, the original MTS model was modified by incorporating variable athermal and DSA components. The suitability of the m-MTS model was assessed by comparing the statistical parameters. It was observed that the m-MTS model was highly accurate for the DSA regime when compared to the existing models. However, models like m-ZA and m-Arr showed better results for the non-DSA regime.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X.Y. Wang and D.Y. Li, Mechanical, Electrochemical and Tribological Properties of Nano-Crystalline Surface of 304 Stainless Steel, Wear, 2003, 255, p 836–845CrossRef X.Y. Wang and D.Y. Li, Mechanical, Electrochemical and Tribological Properties of Nano-Crystalline Surface of 304 Stainless Steel, Wear, 2003, 255, p 836–845CrossRef
2.
Zurück zum Zitat A.K. Gupta, H.N. Krishnamurthy, Y. Singh, K.M. Prasad, and S.K. Singh, Development of Constitutive Models for Dynamic Strain Aging Regime in Austenitic Stainless Steel 304, Mater. Des., 2013, 45, p 616–627CrossRef A.K. Gupta, H.N. Krishnamurthy, Y. Singh, K.M. Prasad, and S.K. Singh, Development of Constitutive Models for Dynamic Strain Aging Regime in Austenitic Stainless Steel 304, Mater. Des., 2013, 45, p 616–627CrossRef
3.
Zurück zum Zitat A.K. Gupta, V.K. Anirudh, and S.K. Singh, Constitutive Models to Predict Flow Stress in Austenitic Stainless Steel 316 at Elevated Temperatures, Mater. Des., 2013, 43, p 410–418CrossRef A.K. Gupta, V.K. Anirudh, and S.K. Singh, Constitutive Models to Predict Flow Stress in Austenitic Stainless Steel 316 at Elevated Temperatures, Mater. Des., 2013, 43, p 410–418CrossRef
4.
Zurück zum Zitat A. Toppo, M.G. Pujar, C. Mallika, U. Kamachi Mudali, and R.K. Dayal, Effect of Nitrogen on Stress Corrosion Behavior of Austenitic Stainless Steels Using Electrochemical Noise Technique, J. Mater. Eng. Perform., 2015, 24, p 1140–1149CrossRef A. Toppo, M.G. Pujar, C. Mallika, U. Kamachi Mudali, and R.K. Dayal, Effect of Nitrogen on Stress Corrosion Behavior of Austenitic Stainless Steels Using Electrochemical Noise Technique, J. Mater. Eng. Perform., 2015, 24, p 1140–1149CrossRef
5.
Zurück zum Zitat T. Kawasaki and K. Mori, A Method of Determining Flow Stress Under Forming Conditions, CIRP Ann. Technol., 1981, 30, p 135–138CrossRef T. Kawasaki and K. Mori, A Method of Determining Flow Stress Under Forming Conditions, CIRP Ann. Technol., 1981, 30, p 135–138CrossRef
6.
Zurück zum Zitat M.Y. Demeri, Drawbeads in Sheet Metal Forming, J. Mater. Eng. Perform., 1993, 2, p 863–866CrossRef M.Y. Demeri, Drawbeads in Sheet Metal Forming, J. Mater. Eng. Perform., 1993, 2, p 863–866CrossRef
7.
Zurück zum Zitat Y.C. Lin and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef Y.C. Lin and X.-M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRef
8.
Zurück zum Zitat J. Hyun, J. Hoon, and R.H. Wagoner, A plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature, Int. J. Plast., 2010, 26, p 1746–1771CrossRef J. Hyun, J. Hoon, and R.H. Wagoner, A plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature, Int. J. Plast., 2010, 26, p 1746–1771CrossRef
9.
Zurück zum Zitat H. Ying, X. Feng, J. Ying, and J. Jiao, A Modified Johnson Cook Model for Elevated Temperature Flow Behavior of T24 Steel, Mater. Sci. Eng. A, 2013, 577, p 138–146CrossRef H. Ying, X. Feng, J. Ying, and J. Jiao, A Modified Johnson Cook Model for Elevated Temperature Flow Behavior of T24 Steel, Mater. Sci. Eng. A, 2013, 577, p 138–146CrossRef
10.
Zurück zum Zitat G. Ji, F. Li, Q. Li, H. Li, and Z. Li, A Comparative Study on Arrhenius-Type Constitutive Model and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in Aermet100 Steel, Mater. Sci. Eng. A, 2011, 528, p 4774–4782CrossRef G. Ji, F. Li, Q. Li, H. Li, and Z. Li, A Comparative Study on Arrhenius-Type Constitutive Model and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in Aermet100 Steel, Mater. Sci. Eng. A, 2011, 528, p 4774–4782CrossRef
11.
Zurück zum Zitat H. Li, X. Wang, D. Wei, J. Hu, and Y. Li, A Comparative Study on Modified Zerilli–Armstrong, Arrhenius-Type and Artificial Neural Network Models to Predict High-Temperature Deformation Behavior in T24 Steel, Mater. Sci. Eng. A, 2012, 536, p 216–222CrossRef H. Li, X. Wang, D. Wei, J. Hu, and Y. Li, A Comparative Study on Modified Zerilli–Armstrong, Arrhenius-Type and Artificial Neural Network Models to Predict High-Temperature Deformation Behavior in T24 Steel, Mater. Sci. Eng. A, 2012, 536, p 216–222CrossRef
12.
Zurück zum Zitat K.S. Prasad and A.K. Gupta, A Constitutive Description to Predict High-Temperature Flow Stress in Austenitic Stainless Steel 316, Procedia Mater. Sci., 2014, 6, p 347–353CrossRef K.S. Prasad and A.K. Gupta, A Constitutive Description to Predict High-Temperature Flow Stress in Austenitic Stainless Steel 316, Procedia Mater. Sci., 2014, 6, p 347–353CrossRef
13.
Zurück zum Zitat B. Banerjee, The Mechanical Threshold Stress Model for Various Tempers of AISI, 4340 Steel, Int. J. Solids Struct., 2007, 44, p 834–859CrossRef B. Banerjee, The Mechanical Threshold Stress Model for Various Tempers of AISI, 4340 Steel, Int. J. Solids Struct., 2007, 44, p 834–859CrossRef
14.
Zurück zum Zitat F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1825CrossRef F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1825CrossRef
15.
Zurück zum Zitat S. Nemat-Nasser and J.B. Isaacs, Direct Measurement of Isothermal Flow Stress of Metals at Elevated Temperatures and High Strain Rates with Application to Ta and TaW Alloys, Acta Mater., 1997, 45, p 907–919CrossRef S. Nemat-Nasser and J.B. Isaacs, Direct Measurement of Isothermal Flow Stress of Metals at Elevated Temperatures and High Strain Rates with Application to Ta and TaW Alloys, Acta Mater., 1997, 45, p 907–919CrossRef
16.
Zurück zum Zitat S. Nemat-Nasser and W.G. Guo, Thermomechanical Response of HSLA-65 Steel Plates: Experiments and Modeling, Mech. Mater., 2005, 37, p 379–405CrossRef S. Nemat-Nasser and W.G. Guo, Thermomechanical Response of HSLA-65 Steel Plates: Experiments and Modeling, Mech. Mater., 2005, 37, p 379–405CrossRef
17.
Zurück zum Zitat P.S. Follansbee and U.F. Kocks, A Constitutive Description of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable, Acta Mater., 1998, 36, p 81–93CrossRef P.S. Follansbee and U.F. Kocks, A Constitutive Description of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable, Acta Mater., 1998, 36, p 81–93CrossRef
18.
Zurück zum Zitat J. Luo, M. Li, X. Li, and Y. Shi, Constitutive Model for High Temperature Deformation of Titanium Alloys Using Internal State Variables, Mech. Mater., 2010, 42, p 157–165CrossRef J. Luo, M. Li, X. Li, and Y. Shi, Constitutive Model for High Temperature Deformation of Titanium Alloys Using Internal State Variables, Mech. Mater., 2010, 42, p 157–165CrossRef
19.
Zurück zum Zitat F.H. Abed, Constitutive Modeling of the Mechanical Behavior of High Strength Ferritic Steels for Static and Dynamic Applications, Mech. Time Depend. Mater., 2010, 14, p 329–345CrossRef F.H. Abed, Constitutive Modeling of the Mechanical Behavior of High Strength Ferritic Steels for Static and Dynamic Applications, Mech. Time Depend. Mater., 2010, 14, p 329–345CrossRef
20.
Zurück zum Zitat A.F. Armas, O.R. Bettin, I. Alvarez-Armas, and G.H. Rubiolo, Strain Aging Effects on the Cyclic Behavior of Austenitic Stainless Steels, J. Nucl. Mater., 1988, 155, p 644–649CrossRef A.F. Armas, O.R. Bettin, I. Alvarez-Armas, and G.H. Rubiolo, Strain Aging Effects on the Cyclic Behavior of Austenitic Stainless Steels, J. Nucl. Mater., 1988, 155, p 644–649CrossRef
21.
Zurück zum Zitat K. Peng, K. Qian, and W. Chen, Effect of Dynamic Strain Aging on High Temperature Properties of Austenitic Stainless Steel, Mater. Sci. Eng. A, 2004, 379, p 372–377CrossRef K. Peng, K. Qian, and W. Chen, Effect of Dynamic Strain Aging on High Temperature Properties of Austenitic Stainless Steel, Mater. Sci. Eng. A, 2004, 379, p 372–377CrossRef
22.
Zurück zum Zitat N. Kotkunde, H. Nitin, P. Puranik, and A. Kumar, Microstructure Study and Constitutive Modeling of Ti–6Al–4V Alloy at Elevated Temperatures, J. Mater. Des., 2014, 54, p 96–103CrossRef N. Kotkunde, H. Nitin, P. Puranik, and A. Kumar, Microstructure Study and Constitutive Modeling of Ti–6Al–4V Alloy at Elevated Temperatures, J. Mater. Des., 2014, 54, p 96–103CrossRef
23.
Zurück zum Zitat C.C. Tasan, J.P.M. Hoefnagels, and M.G.D. Geers, A Brittle-Fracture Methodology for Three-Dimensional Visualization of Ductile Deformation Micromechanisms, Scr. Mater., 2009, 61, p 20–23CrossRef C.C. Tasan, J.P.M. Hoefnagels, and M.G.D. Geers, A Brittle-Fracture Methodology for Three-Dimensional Visualization of Ductile Deformation Micromechanisms, Scr. Mater., 2009, 61, p 20–23CrossRef
24.
Zurück zum Zitat D.M. Goto, R.K. Garrett, J.F. Bingert, S.R. Chen, and G.T. Gray, The Mechanical Threshold Stress Constitutive-Strength Model Description of HY-100 Steel, Metall. Mater. Trans. A, 2000, 31, p 1985–1996CrossRef D.M. Goto, R.K. Garrett, J.F. Bingert, S.R. Chen, and G.T. Gray, The Mechanical Threshold Stress Constitutive-Strength Model Description of HY-100 Steel, Metall. Mater. Trans. A, 2000, 31, p 1985–1996CrossRef
25.
Zurück zum Zitat M.L. Newman, B.J. Robinson, H. Sehitoglu, and J.A. Dantzig, Deformation, Residual Stress, and Constitutive Relations for Quenched W319 Aluminum, Metall. Mater. Trans. A, 2003, 34, p 1483–1491CrossRef M.L. Newman, B.J. Robinson, H. Sehitoglu, and J.A. Dantzig, Deformation, Residual Stress, and Constitutive Relations for Quenched W319 Aluminum, Metall. Mater. Trans. A, 2003, 34, p 1483–1491CrossRef
26.
Zurück zum Zitat A. Rusinek and J.R. Klepaczko, Shear Testing of a Sheet Steel at Wide Range of Strain Rates and a Constitutive Relation with Strain-Rate and Temperature Dependence of the Flow Stress, Int. J. Plast., 2001, 17, p 87–115CrossRef A. Rusinek and J.R. Klepaczko, Shear Testing of a Sheet Steel at Wide Range of Strain Rates and a Constitutive Relation with Strain-Rate and Temperature Dependence of the Flow Stress, Int. J. Plast., 2001, 17, p 87–115CrossRef
27.
Zurück zum Zitat A. Rusinek and J.A. Rodriguez-Martinez, Thermo-Viscoplastic Constitutive Relation for Aluminium Alloys, Modeling of Negative Strain Rate Sensitivity and Viscous Drag Effects, Mater. Des., 2009, 30, p 4377–4390CrossRef A. Rusinek and J.A. Rodriguez-Martinez, Thermo-Viscoplastic Constitutive Relation for Aluminium Alloys, Modeling of Negative Strain Rate Sensitivity and Viscous Drag Effects, Mater. Des., 2009, 30, p 4377–4390CrossRef
28.
Zurück zum Zitat P.S. Follansbee, An Internal State Variable Constitutive Model Describing Metal Deformation, Mater. Sci. Appl., 2014, 05, p 603–609 P.S. Follansbee, An Internal State Variable Constitutive Model Describing Metal Deformation, Mater. Sci. Appl., 2014, 05, p 603–609
29.
Zurück zum Zitat T. Noriyuki, M. Hideaki, T. Yo, U. Osamu, and N. Kotobu, Description of Stress–Strain Curves Based on Thermal Activation Models for a Ti–Fe–O Alloy at 77–296 K with Strain Rates from 10−9–10−2 s−1, ISIJ Int., 2000, 40, p 84–90CrossRef T. Noriyuki, M. Hideaki, T. Yo, U. Osamu, and N. Kotobu, Description of Stress–Strain Curves Based on Thermal Activation Models for a Ti–Fe–O Alloy at 77–296 K with Strain Rates from 10−9–10−2 s−1, ISIJ Int., 2000, 40, p 84–90CrossRef
30.
Zurück zum Zitat D.H. Lassila, A. Goldberg, and R. Becker, The Effect of Grain Boundaries on the Athermal Stress of Tantalum and Tantalum–Tungsten Alloys, Metall. Mater. Trans. A, 2002, 33, p 3457–3464CrossRef D.H. Lassila, A. Goldberg, and R. Becker, The Effect of Grain Boundaries on the Athermal Stress of Tantalum and Tantalum–Tungsten Alloys, Metall. Mater. Trans. A, 2002, 33, p 3457–3464CrossRef
31.
Zurück zum Zitat W.F. Kocks, Thermodynamics and Kinetics of Slip, Progr. Mater. Sci., 1975, 19, p 291 W.F. Kocks, Thermodynamics and Kinetics of Slip, Progr. Mater. Sci., 1975, 19, p 291
32.
Zurück zum Zitat W.-G. Guo and X. Gao, On the Constitutive Modeling of a Structural Steel Over a Range of Strain Rates and Temperatures, Mater. Sci. Eng. A, 2013, 561, p 468–476CrossRef W.-G. Guo and X. Gao, On the Constitutive Modeling of a Structural Steel Over a Range of Strain Rates and Temperatures, Mater. Sci. Eng. A, 2013, 561, p 468–476CrossRef
33.
Zurück zum Zitat S. Abdel-Malek, and L.W. Meyer, Deformation and Ductile Fracture of a Low Alloy Steel under High Strain Rate Loading, International Conference on High Speed Forming, 2006, p 41–48 S. Abdel-Malek, and L.W. Meyer, Deformation and Ductile Fracture of a Low Alloy Steel under High Strain Rate Loading, International Conference on High Speed Forming, 2006, p 41–48
34.
Zurück zum Zitat V. Sainath, M.V. Sukesh, and A.K. Gupta, Flow stress prediction in Austenitic Stainless Steel 304 at elevated temperatures, Int. Conf. Mater. Process. Charact., 2012 V. Sainath, M.V. Sukesh, and A.K. Gupta, Flow stress prediction in Austenitic Stainless Steel 304 at elevated temperatures, Int. Conf. Mater. Process. Charact., 2012
35.
Zurück zum Zitat Y. Singh, H.N. Krishnamurthy, A.K. Gupta, and S.K. Singh, A Comparative Study of Constitutive Models to Predict Flow Stress Behavior in Dynamic Strain Aging Regime of Austenitic Stainless Steel 316, Annu. Int. Conf. Mater. Sci. Met. Manuf., 2012, 2, p 98 Y. Singh, H.N. Krishnamurthy, A.K. Gupta, and S.K. Singh, A Comparative Study of Constitutive Models to Predict Flow Stress Behavior in Dynamic Strain Aging Regime of Austenitic Stainless Steel 316, Annu. Int. Conf. Mater. Sci. Met. Manuf., 2012, 2, p 98
Metadaten
Titel
A Modified Mechanical Threshold Stress Constitutive Model for Austenitic Stainless Steels
verfasst von
K. Sajun Prasad
Amit Kumar Gupta
Yashjeet Singh
Swadesh Kumar Singh
Publikationsdatum
13.10.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2389-5

Weitere Artikel der Ausgabe 12/2016

Journal of Materials Engineering and Performance 12/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.