Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

05.10.2017

A modified multi objective heuristic for effective feature selection in text classification

Zeitschrift:
Cluster Computing
Autoren:
D. Thiyagarajan, N. Shanthi

Abstract

Text categorization is the process of sorting text documents into one or more predefined categories or classes of similar documents. Differences in the results of such categorization arise from the feature set chosen to base the association of a given document with a given category. This process is challenging mainly because there can be large number of discriminating words which render many of the current algorithms unable to complete this. For most of these tasks there exist both relevant as well as irrelevant features. The objective here is to bring about a text classification on the basis of the features selected and also pre-processing to bring down the dimensionality and increase the accuracy of classification of the feature vector. Here the most commonly used methods are meta-heuristic algorithms in order to facilitate selection. Artificial fish swarm algorithm (AFSA) takes the underlying intelligence of the behaviour of fish swarming to combat the problems of optimization as well as the combinatorial problems. This method has been greatly successful in diverse applications but does suffer from certain limitations like not having multiplicity. Therefore, a modification has been proposed to AFSA which is MAFSA that has a crossover in its operation in order to bring about an improvement in the text classification selection. SVM or Support Vector Machine, Adaboost classifiers and naïve bayes are all used here. MAFSA has proved itself to be superior to AFSA in terms of precision and also the selected feature numbers.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Best Practices für die Mitarbeiter-Partizipation in der Produktentwicklung

Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier  - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis.
Jetzt gratis downloaden!

Bildnachweise