Skip to main content
Erschienen in:
Buchtitelbild

2014 | OriginalPaper | Buchkapitel

1. A Monolithic CMOS Self-compensated LC Oscillator Across Temperature

verfasst von : A. Helmy, N. Sinoussi, A. Elkholy, M. Essam, A. Hassanein, A. Ahmed

Erschienen in: Frequency References, Power Management for SoC, and Smart Wireless Interfaces

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper describes a monolithic CMOS reference clock based on an LC oscillator. To achieve a low temperature coefficient, its LC tank is operated at a temperature-null phase. The result is a self-compensated oscillator (SCO) whose output can be programmed from 1 to 133 MHz and which draws 7 mA (no load) from a 3.3 V supply at 25 MHz. After a low cost room temperature trim, the SCO in both ceramic and plastic packages achieves a measured stability of ±50 ppm from −20°C to +70°C. At 133 MHz, its integrated jitter is 0.4 ps from 1.875 to 20 MHz, while at 25 MHz its period jitter is 2.7 ps.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. Bottom, A history of the quartz crystal industry in the USA, in Thirty Fifth Annual Frequency Control Symposium, 1981, pp. 3–12 V. Bottom, A history of the quartz crystal industry in the USA, in Thirty Fifth Annual Frequency Control Symposium, 1981, pp. 3–12
2.
Zurück zum Zitat C.S. Lam, A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry, in IEEE Ultrasonics Symposium, (Beijing, 2008), pp. 694–704 C.S. Lam, A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry, in IEEE Ultrasonics Symposium, (Beijing, 2008), pp. 694–704
3.
Zurück zum Zitat H. Nathanson, W. Newell, R. Wickstrom, J. Davis, J.R., The resonant gate transistor. Electron Devices, IEEE Trans. 14(3), 117–133 (1967) H. Nathanson, W. Newell, R. Wickstrom, J. Davis, J.R., The resonant gate transistor. Electron Devices, IEEE Trans. 14(3), 117–133 (1967)
4.
Zurück zum Zitat DSC8001 Series PureSilcon TM Programmable CMOS Oscillator Datasheet, MK – Q – B – P – D – 090110–03–2 ed. by (Discera, San Jose, 2010) DSC8001 Series PureSilcon TM Programmable CMOS Oscillator Datasheet, MK – Q – B – P – D – 090110–03–2 ed. by (Discera, San Jose, 2010)
5.
Zurück zum Zitat MEMS Replacing Quartz Oscillators, Application Note SiT-AN10010 Review 1.1, (SiTime Corporation, Sunnyvale, 2009) MEMS Replacing Quartz Oscillators, Application Note SiT-AN10010 Review 1.1, (SiTime Corporation, Sunnyvale, 2009)
6.
Zurück zum Zitat M.H. Perrott et al., A temperature-to-digital converter for a MEMS-based programmable oscillator with < ±0.5-ppm frequency stability and < 1ps integrated jitter. Solid-State Circuit IEEE J. 48(1), 276–291 (2013)CrossRef M.H. Perrott et al., A temperature-to-digital converter for a MEMS-based programmable oscillator with < ±0.5-ppm frequency stability and < 1ps integrated jitter. Solid-State Circuit IEEE J. 48(1), 276–291 (2013)CrossRef
7.
Zurück zum Zitat M. Renata et al., Temperature-compensated high-stability silicon resonators. Appl. Phys. Lett. 90(24), 244107–3 (2007)CrossRef M. Renata et al., Temperature-compensated high-stability silicon resonators. Appl. Phys. Lett. 90(24), 244107–3 (2007)CrossRef
8.
Zurück zum Zitat Wan-Thai Hsu, C.T.-C. Nguyen, Geometric stress compensation for enhanced thermal stability in micromechanical resonators, in Proceedings, 1998 I.E. International Ultrasonics Symposium, (Sendain, 1998), pp. 945–948, 5–8 Oct 1998 Wan-Thai Hsu, C.T.-C. Nguyen, Geometric stress compensation for enhanced thermal stability in micromechanical resonators, in Proceedings, 1998 I.E. International Ultrasonics Symposium, (Sendain, 1998), pp. 945–948, 5–8 Oct 1998
9.
Zurück zum Zitat Wan-Thai Hsu, C.T.-C. Nguyen, Stiffness-Compensated temperature-insensitive micromechanical resonators, in Technical Digest, 2002 I.E. International Micro Electro Mechanical Systems Conference, (Las Vegas, 2002), pp. 731–734, 20–24 Jan 2002 Wan-Thai Hsu, C.T.-C. Nguyen, Stiffness-Compensated temperature-insensitive micromechanical resonators, in Technical Digest, 2002 I.E. International Micro Electro Mechanical Systems Conference, (Las Vegas, 2002), pp. 731–734, 20–24 Jan 2002
10.
Zurück zum Zitat R.F. Adams, D.O. Pederson, Temperature sensitivity of frequency of integrated oscillators. IEEE J. Solid-State Circuit SC-3(4), 391–396 (1968)CrossRef R.F. Adams, D.O. Pederson, Temperature sensitivity of frequency of integrated oscillators. IEEE J. Solid-State Circuit SC-3(4), 391–396 (1968)CrossRef
11.
Zurück zum Zitat A.V. Boas, A. Olmos, A temperature compensated digitally trimmable on-chip IC oscillator with low voltage inhibit capability, in Proceeding IEEE International Symposium Circuits and Systems (ISCAS), vol. 1 (2004), pp. 501–504 A.V. Boas, A. Olmos, A temperature compensated digitally trimmable on-chip IC oscillator with low voltage inhibit capability, in Proceeding IEEE International Symposium Circuits and Systems (ISCAS), vol. 1 (2004), pp. 501–504
12.
Zurück zum Zitat K. Sandaresan, P.E. Allen, F. Ayazi, Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J. Solid-State Circuit 41(2), 433–441 (2006)CrossRef K. Sandaresan, P.E. Allen, F. Ayazi, Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J. Solid-State Circuit 41(2), 433–441 (2006)CrossRef
13.
Zurück zum Zitat Y. Tokunaga et al., An on-chip CMOS relaxation oscillator with voltage averaging feedback. IEEE J. Solid-State Circuit 45(6), 1150–1158 (2010)CrossRef Y. Tokunaga et al., An on-chip CMOS relaxation oscillator with voltage averaging feedback. IEEE J. Solid-State Circuit 45(6), 1150–1158 (2010)CrossRef
14.
Zurück zum Zitat eoSemi Unveils Silicon Oscillator Technology, Announces Shipment of First Silicon to Select Customers (Congleton, 2012), 13 Mar 2012 eoSemi Unveils Silicon Oscillator Technology, Announces Shipment of First Silicon to Select Customers (Congleton, 2012), 13 Mar 2012
15.
Zurück zum Zitat S. Mahdi Kashmiri, Kamran Souri, Kofi A. A. Makinwa, A scaled thermal-diffusivity-based 16 MHz frequency reference in 0.16 μm CMOS. IEEE J. Solid-State Circuit 47(7), 1535–1545 (2012) S. Mahdi Kashmiri, Kamran Souri, Kofi A. A. Makinwa, A scaled thermal-diffusivity-based 16 MHz frequency reference in 0.16 μm CMOS. IEEE J. Solid-State Circuit 47(7), 1535–1545 (2012)
16.
Zurück zum Zitat J. Ebrahimi, Thermal diffusivity measurement of small silicon chips. J. Phys. D. Appl. 3, 236–239 (1970)CrossRef J. Ebrahimi, Thermal diffusivity measurement of small silicon chips. J. Phys. D. Appl. 3, 236–239 (1970)CrossRef
17.
Zurück zum Zitat Si500S Single-Ended Output Silicon Oscillator Review 1.0 5/11, (Silicon Laboratories, Austin) Si500S Single-Ended Output Silicon Oscillator Review 1.0 5/11, (Silicon Laboratories, Austin)
18.
Zurück zum Zitat M. McCorquodale et al., A 25-MHz self-referenced solid-state frequency source suitable for XO-replacement. Circ. Syst. I: Regul. Pap. IEEE Trans. 56(5), 943–956 (2009)MathSciNetCrossRef M. McCorquodale et al., A 25-MHz self-referenced solid-state frequency source suitable for XO-replacement. Circ. Syst. I: Regul. Pap. IEEE Trans. 56(5), 943–956 (2009)MathSciNetCrossRef
19.
Zurück zum Zitat M.S. McCorquodale et al., A silicon Die as a frequency source, in Proceeding of IEEE International Frequency Control Symposium, (2010), pp. 103–108, 1–4 June 2010 M.S. McCorquodale et al., A silicon Die as a frequency source, in Proceeding of IEEE International Frequency Control Symposium, (2010), pp. 103–108, 1–4 June 2010
20.
Zurück zum Zitat 3DN Series CrystalFree TM Oscillator Preliminary Data Sheet (Integrated Device Technology, San Jose, 2012) 3DN Series CrystalFree TM Oscillator Preliminary Data Sheet (Integrated Device Technology, San Jose, 2012)
21.
Zurück zum Zitat A. Ahmed, B. Hanafi, S. Hosny, N. Sinoussi, A. Hamed, M. Samir, M. Essam, A. El-Kholy, M. Weheiba, A. Helmy, A highly stable CMOS Self-Compensated Oscillator (SCO) based on an LC tank temperature null concept, in Proceeding IEEE International Frequency Control Symposium, 2011, pp. 1–5 A. Ahmed, B. Hanafi, S. Hosny, N. Sinoussi, A. Hamed, M. Samir, M. Essam, A. El-Kholy, M. Weheiba, A. Helmy, A highly stable CMOS Self-Compensated Oscillator (SCO) based on an LC tank temperature null concept, in Proceeding IEEE International Frequency Control Symposium, 2011, pp. 1–5
22.
Zurück zum Zitat N. Sinoussi, A. Hamed, M. Essam, A. El-Kholy, A. Hassanein, M. Saeed, A. Helmy, A. Ahmed, A single LC tank self-compensated CMOS oscillator with frequency stability of ±100 ppm from −40°C to 85°C, in Proceeding IEEE International Frequency Control Symposium, 2012, pp. 1–5 N. Sinoussi, A. Hamed, M. Essam, A. El-Kholy, A. Hassanein, M. Saeed, A. Helmy, A. Ahmed, A single LC tank self-compensated CMOS oscillator with frequency stability of ±100 ppm from −40°C to 85°C, in Proceeding IEEE International Frequency Control Symposium, 2012, pp. 1–5
23.
Zurück zum Zitat B. Hanafi, S. Hosny, A. Ahmed, Method, system and apparatus for accurate and stable LC-based reference oscillators, U.S. Patent 8, 072, 281B2, (2011) 6 Dec 2011 B. Hanafi, S. Hosny, A. Ahmed, Method, system and apparatus for accurate and stable LC-based reference oscillators, U.S. Patent 8, 072, 281B2, (2011) 6 Dec 2011
24.
Zurück zum Zitat J. Groszkowski, Frequency of Self-Oscillations, (Oxford/Pergamon, 1964) J. Groszkowski, Frequency of Self-Oscillations, (Oxford/Pergamon, 1964)
25.
Zurück zum Zitat A. Mirzaei, M.E. Heidari, R. Bagheri, S. Chehrazi, A.A. Abidi, The quadrature LC oscillator: a complete portrait based on injection locking. Solid-State Circuit IEEE J. 42(9), 1916–1932 (2007)CrossRef A. Mirzaei, M.E. Heidari, R. Bagheri, S. Chehrazi, A.A. Abidi, The quadrature LC oscillator: a complete portrait based on injection locking. Solid-State Circuit IEEE J. 42(9), 1916–1932 (2007)CrossRef
Metadaten
Titel
A Monolithic CMOS Self-compensated LC Oscillator Across Temperature
verfasst von
A. Helmy
N. Sinoussi
A. Elkholy
M. Essam
A. Hassanein
A. Ahmed
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-01080-9_1

Neuer Inhalt