Skip to main content

06.12.2024 | Original Article

A monolithic overset finite element method for CFD with application to bio-inspired fliers

verfasst von: Ze Zhao, Shashwot Paudel, Yongjia Xu, Xuguang Wang, Qiming Zhu, Jinhui Yan

Erschienen in: Engineering with Computers

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a monolithic finite element-based overset approach to simulate turbulent flows around moving structures using overlapping unstructured meshes. The conventional Schwarz alternating method, which iterates between overlapping subdomains by exchanging boundary conditions to obtain the solution, often suffers from slow convergence. Aiming to address this issue, we formulate a computational framework that treats overlapping subdomains as a whole system by evaluating solution continuity across subdomain boundaries as residuals in the nonlinear solving process. The approach does not necessitate iterative procedures between subdomains, leading to a practical monolithic approach. We propose two additional techniques in the framework to enable an efficient parallel implementation. Firstly, an octree-accelerated node location algorithm is developed for fast solution projection between subdomains. Secondly, since no connectivity exists for the overlapping subdomains, a parallel generalized minimal residual method (GMRES) with a composite and partial matrix-free technique is proposed to solve the linear systems covering the entire problem domain. The proposed monolithic concept is combined with arbitrary Lagrangian–Eulerian and variational multi-scale formulations (ALE-VMS) to simulate turbulent flows on moving meshes. We present the mathematical and implementation details of the proposed overset approach. Then, we verify the proposed approach using Burgers’ equation. The proposed approach is thoroughly assessed under different spatial resolutions, time step lengths, and overlapping sizes. The convergence study shows that the proposed monolithic approach outperforms the traditional Schwarz alternating method. The improved performance of the monolithic approach is further demonstrated by simulating flow past a sphere. Finally, we apply the proposed approach to simulate the aerodynamics around a bio-inspired flying system involving two fliers. The proposed approach can simultaneously maintain a boundary-fitted representation and handle the relative motion between the two fliers, delivering results that show good agreement with wind tunnel experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Burman E, Claus S, Hansbo P, Larson M, Massing A (2015) Cutfem: discretizing geometry and partial differential equations. Int J Numer Methods Eng 104(7):472–501MathSciNetCrossRef Burman E, Claus S, Hansbo P, Larson M, Massing A (2015) Cutfem: discretizing geometry and partial differential equations. Int J Numer Methods Eng 104(7):472–501MathSciNetCrossRef
3.
Zurück zum Zitat Parvizian J, Düster A, Rank E (2007) Finite cell method: h-and p-extension for embedded domain problems in solid mechanics. Comput Mech 41(1):121–133MathSciNetCrossRef Parvizian J, Düster A, Rank E (2007) Finite cell method: h-and p-extension for embedded domain problems in solid mechanics. Comput Mech 41(1):121–133MathSciNetCrossRef
4.
Zurück zum Zitat Zhao Z, Yan J (2022) Enriched immersed boundary method (EIBM) for interface-coupled multi-physics and applications to convective conjugate heat transfer. Comput Methods Appl Mech Eng 401:115667MathSciNetCrossRef Zhao Z, Yan J (2022) Enriched immersed boundary method (EIBM) for interface-coupled multi-physics and applications to convective conjugate heat transfer. Comput Methods Appl Mech Eng 401:115667MathSciNetCrossRef
5.
Zurück zum Zitat Bastian P, Engwer C (2009) An unfitted finite element method using discontinuous galerkin. Int J Numer Methods Eng 79(12):1557–1576MathSciNetCrossRef Bastian P, Engwer C (2009) An unfitted finite element method using discontinuous galerkin. Int J Numer Methods Eng 79(12):1557–1576MathSciNetCrossRef
6.
Zurück zum Zitat Main A, Scovazzi G (2018) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. J Comput Phys 372:972–995MathSciNetCrossRef Main A, Scovazzi G (2018) The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems. J Comput Phys 372:972–995MathSciNetCrossRef
7.
Zurück zum Zitat Main A, Scovazzi G (2018) The shifted boundary method for embedded domain computations. Part II: linear advection-diffusion and incompressible Navier-Stokes equations. J Comput Phys 372:996–1026MathSciNetCrossRef Main A, Scovazzi G (2018) The shifted boundary method for embedded domain computations. Part II: linear advection-diffusion and incompressible Navier-Stokes equations. J Comput Phys 372:996–1026MathSciNetCrossRef
8.
Zurück zum Zitat Duprez M, Lozinski A (2020) \(\phi\)-fem: a finite element method on domains defined by level-sets. SIAM J Numer Anal 58(2):1008–1028MathSciNetCrossRef Duprez M, Lozinski A (2020) \(\phi\)-fem: a finite element method on domains defined by level-sets. SIAM J Numer Anal 58(2):1008–1028MathSciNetCrossRef
9.
Zurück zum Zitat Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071MathSciNetCrossRef Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071MathSciNetCrossRef
10.
Zurück zum Zitat Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053MathSciNetCrossRef Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053MathSciNetCrossRef
11.
Zurück zum Zitat Zhu Q, Xu F, Xu S, Hsu M, Yan J (2020) An immersogeometric formulation for free-surface flows with application to marine engineering problems. Comput Methods Appl Mech Eng 361:112748MathSciNetCrossRef Zhu Q, Xu F, Xu S, Hsu M, Yan J (2020) An immersogeometric formulation for free-surface flows with application to marine engineering problems. Comput Methods Appl Mech Eng 361:112748MathSciNetCrossRef
12.
Zurück zum Zitat Casquero H, Bona-Casas C, Toshniwal D, Hughes T, Gomez H, Zhang Y (2021) The divergence-conforming immersed boundary method: application to vesicle and capsule dynamics. J Comput Phys 425:109872MathSciNetCrossRef Casquero H, Bona-Casas C, Toshniwal D, Hughes T, Gomez H, Zhang Y (2021) The divergence-conforming immersed boundary method: application to vesicle and capsule dynamics. J Comput Phys 425:109872MathSciNetCrossRef
13.
Zurück zum Zitat Casquero H, Bona-Casas C, Gomez H (2015) A nurbs-based immersed methodology for fluid-structure interaction. Comput Methods Appl Mech Eng 284:943–970MathSciNetCrossRef Casquero H, Bona-Casas C, Gomez H (2015) A nurbs-based immersed methodology for fluid-structure interaction. Comput Methods Appl Mech Eng 284:943–970MathSciNetCrossRef
14.
Zurück zum Zitat Moutsanidis G, Kamensky D, Chen J, Bazilevs Y (2018) Hyperbolic phase field modeling of brittle fracture: part II-immersed IGA-RKPM coupling for air-blast-structure interaction. J Mech Phys Solids 121:114–132MathSciNetCrossRef Moutsanidis G, Kamensky D, Chen J, Bazilevs Y (2018) Hyperbolic phase field modeling of brittle fracture: part II-immersed IGA-RKPM coupling for air-blast-structure interaction. J Mech Phys Solids 121:114–132MathSciNetCrossRef
15.
Zurück zum Zitat Bazilevs Y, Hughes T (2008) Nurbs-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43:143–150CrossRef Bazilevs Y, Hughes T (2008) Nurbs-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43:143–150CrossRef
16.
Zurück zum Zitat Yan J, Deng X, Korobenko A, Bazilevs Y (2016) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids Yan J, Deng X, Korobenko A, Bazilevs Y (2016) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids
17.
Zurück zum Zitat Takizawa K, Tezduyar T, Kuraishi T, Tabata S, Takagi H (2016) Computational thermo-fluid analysis of a disk brake. Comput Mech 57:965–977MathSciNetCrossRef Takizawa K, Tezduyar T, Kuraishi T, Tabata S, Takagi H (2016) Computational thermo-fluid analysis of a disk brake. Comput Mech 57:965–977MathSciNetCrossRef
18.
Zurück zum Zitat Takizawa K, Tezduyar T, Mochizuki H, Hattori H, Mei S, Pan L, Montel K (2015) Space-time vms method for flow computations with slip interfaces (st-si). Math Models Methods Appl Sci 25(12):2377–2406MathSciNetCrossRef Takizawa K, Tezduyar T, Mochizuki H, Hattori H, Mei S, Pan L, Montel K (2015) Space-time vms method for flow computations with slip interfaces (st-si). Math Models Methods Appl Sci 25(12):2377–2406MathSciNetCrossRef
20.
Zurück zum Zitat Volkov E (1968) The method of composite meshes for finite and infinite regions with piecewise smooth boundary. Trudy Matematicheskogo Instituta imeni VA Steklova 96:117–148 Volkov E (1968) The method of composite meshes for finite and infinite regions with piecewise smooth boundary. Trudy Matematicheskogo Instituta imeni VA Steklova 96:117–148
21.
Zurück zum Zitat Henshaw W (1994) A fourth-order accurate method for the incompressible Navier–Stokes equations on overlapping grids. J Comput Phys 113(1):13–25MathSciNetCrossRef Henshaw W (1994) A fourth-order accurate method for the incompressible Navier–Stokes equations on overlapping grids. J Comput Phys 113(1):13–25MathSciNetCrossRef
22.
Zurück zum Zitat Henshaw W, Chand K (2009) A composite grid solver for conjugate heat transfer in fluid-structure systems. J Comput Phys 228(10):3708–3741MathSciNetCrossRef Henshaw W, Chand K (2009) A composite grid solver for conjugate heat transfer in fluid-structure systems. J Comput Phys 228(10):3708–3741MathSciNetCrossRef
23.
Zurück zum Zitat Appelö D, Banks J, Henshaw W, Schwendeman D (2012) Numerical methods for solid mechanics on overlapping grids: linear elasticity. J Comput Phys 231(18):6012–6050MathSciNetCrossRef Appelö D, Banks J, Henshaw W, Schwendeman D (2012) Numerical methods for solid mechanics on overlapping grids: linear elasticity. J Comput Phys 231(18):6012–6050MathSciNetCrossRef
24.
Zurück zum Zitat Koblitz A, Lovett S, Nikiforakis N, Henshaw W (2017) Direct numerical simulation of particulate flows with an overset grid method. J Comput Phys 343:414–431MathSciNetCrossRef Koblitz A, Lovett S, Nikiforakis N, Henshaw W (2017) Direct numerical simulation of particulate flows with an overset grid method. J Comput Phys 343:414–431MathSciNetCrossRef
25.
Zurück zum Zitat Meng F, Banks J, Henshaw W, Schwendeman D (2020) Fourth-order accurate fractional-step imex schemes for the incompressible Navier–Stokes equations on moving overlapping grids. Comput Methods Appl Mech Eng 366:113040MathSciNetCrossRef Meng F, Banks J, Henshaw W, Schwendeman D (2020) Fourth-order accurate fractional-step imex schemes for the incompressible Navier–Stokes equations on moving overlapping grids. Comput Methods Appl Mech Eng 366:113040MathSciNetCrossRef
26.
Zurück zum Zitat Yan J, Deng X, Korobenko A, Bazilevs Y (2017) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids 158:157–166MathSciNetCrossRef Yan J, Deng X, Korobenko A, Bazilevs Y (2017) Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput Fluids 158:157–166MathSciNetCrossRef
27.
Zurück zum Zitat Korobenko A, Yan J, Gohari S, Sarkar S, Bazilevs Y (2017) Fsi simulation of two back-to-back wind turbines in atmospheric boundary layer flow. Comput Fluids 158:167–175MathSciNetCrossRef Korobenko A, Yan J, Gohari S, Sarkar S, Bazilevs Y (2017) Fsi simulation of two back-to-back wind turbines in atmospheric boundary layer flow. Comput Fluids 158:167–175MathSciNetCrossRef
28.
Zurück zum Zitat Yan J, Deng X, Xu F, Xu S, Zhu Q (2020) Numerical simulations of two back-to-back horizontal axis tidal stream turbines in free-surface flows. J Appl Mech 87(6):061001CrossRef Yan J, Deng X, Xu F, Xu S, Zhu Q (2020) Numerical simulations of two back-to-back horizontal axis tidal stream turbines in free-surface flows. J Appl Mech 87(6):061001CrossRef
29.
Zurück zum Zitat Korobenko A, Hsu M, Akkerman I, Bazilevs Y (2014) Aerodynamic simulation of vertical-axis wind turbines. J Appl Mech 81(2):021011CrossRef Korobenko A, Hsu M, Akkerman I, Bazilevs Y (2014) Aerodynamic simulation of vertical-axis wind turbines. J Appl Mech 81(2):021011CrossRef
30.
Zurück zum Zitat Houzeaux G, Cajas J, Discacciati M, Eguzkitza B, Gargallo-Peiró A, Rivero M, Vázquez M (2017) Domain decomposition methods for domain composition purpose: chimera, overset, gluing and sliding mesh methods. Arch Comput Methods Eng 24:1033–1070MathSciNetCrossRef Houzeaux G, Cajas J, Discacciati M, Eguzkitza B, Gargallo-Peiró A, Rivero M, Vázquez M (2017) Domain decomposition methods for domain composition purpose: chimera, overset, gluing and sliding mesh methods. Arch Comput Methods Eng 24:1033–1070MathSciNetCrossRef
31.
Zurück zum Zitat Quarteroni A, Valli A (1999) Domain decomposition methods for partial differential equations. Oxford University Press, OxfordCrossRef Quarteroni A, Valli A (1999) Domain decomposition methods for partial differential equations. Oxford University Press, OxfordCrossRef
32.
Zurück zum Zitat Tang H, Haynes R, Houzeaux G (2021) A review of domain decomposition methods for simulation of fluid flows: concepts, algorithms, and applications. Arch Comput Methods Eng 28:841–873MathSciNetCrossRef Tang H, Haynes R, Houzeaux G (2021) A review of domain decomposition methods for simulation of fluid flows: concepts, algorithms, and applications. Arch Comput Methods Eng 28:841–873MathSciNetCrossRef
33.
Zurück zum Zitat Dolean V, Jolivet P, Nataf F (2015) An introduction to domain decomposition methods: algorithms, theory, and parallel implementation. SIAM, PhiladelphiaCrossRef Dolean V, Jolivet P, Nataf F (2015) An introduction to domain decomposition methods: algorithms, theory, and parallel implementation. SIAM, PhiladelphiaCrossRef
34.
Zurück zum Zitat Schwarz H (1869) Ueber einige abbildungsaufgaben. Journal für die reine und angewandte Mathematik 1869(70):105–120MathSciNetCrossRef Schwarz H (1869) Ueber einige abbildungsaufgaben. Journal für die reine und angewandte Mathematik 1869(70):105–120MathSciNetCrossRef
35.
Zurück zum Zitat Meakin R (1993) Moving body overset grid methods for complete aircraft tiltrotor simulations. In 11th computational fluid dynamics conference, p 3350 Meakin R (1993) Moving body overset grid methods for complete aircraft tiltrotor simulations. In 11th computational fluid dynamics conference, p 3350
36.
Zurück zum Zitat Chan W (2009) Overset grid technology development at nasa ames research center. Comput Fluids 38(3):496–503CrossRef Chan W (2009) Overset grid technology development at nasa ames research center. Comput Fluids 38(3):496–503CrossRef
37.
Zurück zum Zitat Chandar D, Damodaran M (2010) Numerical study of the free flight characteristics of a flapping wing in low Reynolds numbers. AIAA J Aircr 47(1):141–150CrossRef Chandar D, Damodaran M (2010) Numerical study of the free flight characteristics of a flapping wing in low Reynolds numbers. AIAA J Aircr 47(1):141–150CrossRef
38.
Zurück zum Zitat Lani A, Sjögreen B, Yee H, Henshaw W (2013) Variable high-order multiblock overlapping grid methods for mixed steady and unsteady multiscale viscous flows, part II: hypersonic nonequilibrium flows. Commun Comput Phys 13(2):583–602CrossRef Lani A, Sjögreen B, Yee H, Henshaw W (2013) Variable high-order multiblock overlapping grid methods for mixed steady and unsteady multiscale viscous flows, part II: hypersonic nonequilibrium flows. Commun Comput Phys 13(2):583–602CrossRef
39.
Zurück zum Zitat Zhao Z, Zhu Q, Karuppiah A, Stuebner M, Lua J, Phan N, Yan J (2023) Computational multi-phase convective conjugate heat transfer on overlapping meshes: a quasi-direct coupling approach via Schwarz alternating method. Comput Mech 71(1):71–88MathSciNetCrossRef Zhao Z, Zhu Q, Karuppiah A, Stuebner M, Lua J, Phan N, Yan J (2023) Computational multi-phase convective conjugate heat transfer on overlapping meshes: a quasi-direct coupling approach via Schwarz alternating method. Comput Mech 71(1):71–88MathSciNetCrossRef
40.
Zurück zum Zitat Gander M (2008) Schwarz methods over the course of time. Electron Trans Numer Anal 31(5):228–255MathSciNet Gander M (2008) Schwarz methods over the course of time. Electron Trans Numer Anal 31(5):228–255MathSciNet
41.
Zurück zum Zitat Oliger J, Skamarock W, Tang W (1986) Convergence analysis and acceleration of the Schwarz alternating method. Stanford Tech. Report. Stanford Univ Stanford Oliger J, Skamarock W, Tang W (1986) Convergence analysis and acceleration of the Schwarz alternating method. Stanford Tech. Report. Stanford Univ Stanford
42.
Zurück zum Zitat Nataf F, Rogier F, de Sturler E (1994) Optimal interface conditions for domain decomposition methods. PhD thesis, CMAP Ecole Polytechnique, Nataf F, Rogier F, de Sturler E (1994) Optimal interface conditions for domain decomposition methods. PhD thesis, CMAP Ecole Polytechnique,
44.
Zurück zum Zitat Martin V (2005) An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions. Appl Numer Math 52(4):401–428MathSciNetCrossRef Martin V (2005) An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions. Appl Numer Math 52(4):401–428MathSciNetCrossRef
45.
Zurück zum Zitat Mota A, Tezaur I, Alleman C (2017) The Schwarz alternating method in solid mechanics. Comput Methods Appl Mech Eng 319:19–51MathSciNetCrossRef Mota A, Tezaur I, Alleman C (2017) The Schwarz alternating method in solid mechanics. Comput Methods Appl Mech Eng 319:19–51MathSciNetCrossRef
46.
Zurück zum Zitat Alcin H, Koobus B, Allain O, Dervieux A (2013) Efficiency and scalability of a two-level Schwarz algorithm for incompressible and compressible flows. Int J Numer Methods Fluids 72(1):69–89MathSciNetCrossRef Alcin H, Koobus B, Allain O, Dervieux A (2013) Efficiency and scalability of a two-level Schwarz algorithm for incompressible and compressible flows. Int J Numer Methods Fluids 72(1):69–89MathSciNetCrossRef
47.
Zurück zum Zitat Martínez D, Pla F, Herrero H, Fernández-Pérez A (2023) A Schwarz alternating method for an evolution convection problem. Appl Numer Math 192:179–96MathSciNetCrossRef Martínez D, Pla F, Herrero H, Fernández-Pérez A (2023) A Schwarz alternating method for an evolution convection problem. Appl Numer Math 192:179–96MathSciNetCrossRef
48.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar T (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Methods Eng 19(2):171–225MathSciNetCrossRef Takizawa K, Bazilevs Y, Tezduyar T (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Methods Eng 19(2):171–225MathSciNetCrossRef
49.
Zurück zum Zitat Bazilevs Y, Hsu M, Takizawa K, Tezduyar T (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Models Methods Appl Sci 22(supp02):1230002CrossRef Bazilevs Y, Hsu M, Takizawa K, Tezduyar T (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Models Methods Appl Sci 22(supp02):1230002CrossRef
50.
Zurück zum Zitat Karypis G, Kumar V (1997) Metis: a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices Karypis G, Kumar V (1997) Metis: a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices
51.
Zurück zum Zitat Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869MathSciNetCrossRef Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869MathSciNetCrossRef
52.
Zurück zum Zitat Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014) Fluid-structure interaction modeling of vertical-axis wind turbines. J Appl Mech 81(8):081006CrossRef Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014) Fluid-structure interaction modeling of vertical-axis wind turbines. J Appl Mech 81(8):081006CrossRef
53.
Zurück zum Zitat Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and fsi simulation of wind turbines. Math Models Methods Appl Sci 23(02):249–272MathSciNetCrossRef Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013) Structural mechanics modeling and fsi simulation of wind turbines. Math Models Methods Appl Sci 23(02):249–272MathSciNetCrossRef
54.
Zurück zum Zitat Yan J, Korobenko A, Deng X, Bazilevs Y (2016) Computational free-surface fluid-structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174MathSciNetCrossRef Yan J, Korobenko A, Deng X, Bazilevs Y (2016) Computational free-surface fluid-structure interaction with application to floating offshore wind turbines. Comput Fluids 141:155–174MathSciNetCrossRef
55.
Zurück zum Zitat Bazilevs Y, Calo V, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37MathSciNetCrossRef Bazilevs Y, Calo V, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37MathSciNetCrossRef
56.
Zurück zum Zitat Khurram R, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid-structure interaction. Comput Mech 38(4–5):403–416CrossRef Khurram R, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid-structure interaction. Comput Mech 38(4–5):403–416CrossRef
57.
Zurück zum Zitat Storti B, Garelli L, Storti M, D’Elía J (2020) A matrix-free chimera approach based on Dirichlet–Dirichlet coupling for domain composition purposes. Comput Math Appl 79(12):3310–3330MathSciNetCrossRef Storti B, Garelli L, Storti M, D’Elía J (2020) A matrix-free chimera approach based on Dirichlet–Dirichlet coupling for domain composition purposes. Comput Math Appl 79(12):3310–3330MathSciNetCrossRef
58.
Zurück zum Zitat Jude, DPN (2019) Advancing the multi-solver paradigm for overset CFD toward heterogeneous architectures. PhD thesis, University of Maryland, College Park Jude, DPN (2019) Advancing the multi-solver paradigm for overset CFD toward heterogeneous architectures. PhD thesis, University of Maryland, College Park
59.
Zurück zum Zitat Jude D, Sitaraman J, Lakshminarayan V, Baeder J (2020) An overset generalised minimal residual method for the multi-solver paradigm. Int J Comput Fluid Dyn 34(1):61–74MathSciNetCrossRef Jude D, Sitaraman J, Lakshminarayan V, Baeder J (2020) An overset generalised minimal residual method for the multi-solver paradigm. Int J Comput Fluid Dyn 34(1):61–74MathSciNetCrossRef
60.
Zurück zum Zitat Jude D, Sitaraman J, Lakshminarayan VK Baeder JD (2018) An overset generalized minimal residual method for the multi-solver paradigm in helios. In: 2018 fluid dynamics conference, p 3247 Jude D, Sitaraman J, Lakshminarayan VK Baeder JD (2018) An overset generalized minimal residual method for the multi-solver paradigm in helios. In: 2018 fluid dynamics conference, p 3247
61.
Zurück zum Zitat Galbraith M, Knapke R, Orkwis P, Benek J (2013) A discontinuous galerkin chimera scheme with implicit artificial boundaries. In: 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, p 514 Galbraith M, Knapke R, Orkwis P, Benek J (2013) A discontinuous galerkin chimera scheme with implicit artificial boundaries. In: 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, p 514
62.
Zurück zum Zitat Cai X, Gropp W, Keyes D (1992) A comparison of some domain decomposition algorithms for nonsymmetric elliptic problems. In: Fifth international symposium on domain decomposition methods for partial differential equations, Philadelphia Cai X, Gropp W, Keyes D (1992) A comparison of some domain decomposition algorithms for nonsymmetric elliptic problems. In: Fifth international symposium on domain decomposition methods for partial differential equations, Philadelphia
63.
Zurück zum Zitat Xu F, Schillinger D, Kamensky D, Varduhn V, Wang C, Hsu M-C (2016) The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries. Comput Fluids 141:135–154MathSciNetCrossRef Xu F, Schillinger D, Kamensky D, Varduhn V, Wang C, Hsu M-C (2016) The tetrahedral finite cell method for fluids: immersogeometric analysis of turbulent flow around complex geometries. Comput Fluids 141:135–154MathSciNetCrossRef
64.
Zurück zum Zitat Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392MathSciNetCrossRef Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1):359–392MathSciNetCrossRef
65.
Zurück zum Zitat Qin N, Ludlow DK, Shaw S (2000) A matrix-free preconditioned newton/gmres method for unsteady Navier–Stokes solutions. Int J Numer Methods Fluids 33(2):223–248CrossRef Qin N, Ludlow DK, Shaw S (2000) A matrix-free preconditioned newton/gmres method for unsteady Navier–Stokes solutions. Int J Numer Methods Fluids 33(2):223–248CrossRef
66.
Zurück zum Zitat Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetCrossRef Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetCrossRef
67.
Zurück zum Zitat Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MathSciNet Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44MathSciNet
68.
Zurück zum Zitat Hughes T, Franca L, Hulbert G (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput Methods Appl Mech Eng 73(2):173–189MathSciNetCrossRef Hughes T, Franca L, Hulbert G (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput Methods Appl Mech Eng 73(2):173–189MathSciNetCrossRef
69.
Zurück zum Zitat Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201MathSciNetCrossRef Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201MathSciNetCrossRef
70.
Zurück zum Zitat Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430CrossRef Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430CrossRef
71.
Zurück zum Zitat Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha\) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4):305–319MathSciNetCrossRef Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha\) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4):305–319MathSciNetCrossRef
72.
Zurück zum Zitat Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94CrossRef Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94CrossRef
73.
Zurück zum Zitat Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha\) method. J Appl Mech 60(2):371–375MathSciNetCrossRef Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha\) method. J Appl Mech 60(2):371–375MathSciNetCrossRef
74.
Zurück zum Zitat Johnson TA, Patel VC (1999) Flow past a sphere up to a Reynolds number of 300. J Fluid Mech 378:19–70CrossRef Johnson TA, Patel VC (1999) Flow past a sphere up to a Reynolds number of 300. J Fluid Mech 378:19–70CrossRef
75.
Zurück zum Zitat Bazilevs Y, Yan J, De Stadler M, Sarkar S (2014) Computation of the flow over a sphere at Re = 3700: a comparison of uniform and turbulent inflow conditions. J Appl Mech 81(12):121003CrossRef Bazilevs Y, Yan J, De Stadler M, Sarkar S (2014) Computation of the flow over a sphere at Re = 3700: a comparison of uniform and turbulent inflow conditions. J Appl Mech 81(12):121003CrossRef
76.
Zurück zum Zitat ...Kim J, Yoon H, Cheng S, Liu F, Kang S, Paudel S, Cho D, Luan H, Lee M, Jeong J, Park G, Huang Y, Lee S, Cho M, Lee G, Han M, Kim B, Yan J, Park Y, Jung S, Chamorro L, Rogers J (2024) Functional bio-inspired hybrid fliers with separated ring and leading edge vortices. PNAS Nexus 3(3):110CrossRef ...Kim J, Yoon H, Cheng S, Liu F, Kang S, Paudel S, Cho D, Luan H, Lee M, Jeong J, Park G, Huang Y, Lee S, Cho M, Lee G, Han M, Kim B, Yan J, Park Y, Jung S, Chamorro L, Rogers J (2024) Functional bio-inspired hybrid fliers with separated ring and leading edge vortices. PNAS Nexus 3(3):110CrossRef
77.
Zurück zum Zitat Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36:12–26MathSciNetCrossRef Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36:12–26MathSciNetCrossRef
Metadaten
Titel
A monolithic overset finite element method for CFD with application to bio-inspired fliers
verfasst von
Ze Zhao
Shashwot Paudel
Yongjia Xu
Xuguang Wang
Qiming Zhu
Jinhui Yan
Publikationsdatum
06.12.2024
Verlag
Springer London
Erschienen in
Engineering with Computers
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-024-02069-w