Skip to main content

2024 | OriginalPaper | Buchkapitel

A Moving Average Genetic Algorithm (MA-GA) for Estimating the COVID-19 Dynamic Based on a Stochastic SIRD Model

verfasst von : Endah R. M. Putri, Aldi E. W. Widianto, Amirul Hakam, Venansius R. Tjahjono, Hadi Susanto

Erschienen in: Applied and Computational Mathematics

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, we examine the transmission of the COVID-19 outbreak using a constructed SIRD stochastic model. To determine the most appropriate model parameters, three stochastic models are proposed, and genetic algorithms (GA) are employed. However, the standard GA has proven inadequate in obtaining suitable parameters for the model, leading to occasional discrepancies in tracking trends from actual case data. To overcome this limitation, we propose a novel modification of the genetic algorithm, termed the Moving Average Genetic Algorithm (MA-GA). Unlike the standard GA, our MA-GA continuously updates the parameters at predetermined intervals, resulting in significantly improved accuracy. By applying this method, we achieve higher precision in providing solutions for the stochastic SIRD model, thereby enhancing its ability to accurately reflect the real-world dynamics of the COVID-19 outbreak.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alanazi, S.A., Kamruzzaman, M., Alruwaili, M., Alshammari, N., Alqahtani, S.A., Karime, A.: Measuring and preventing COVID-19 using the SIR model and machine learning in smart health care. J. Healthc. Eng. (2020) Alanazi, S.A., Kamruzzaman, M., Alruwaili, M., Alshammari, N., Alqahtani, S.A., Karime, A.: Measuring and preventing COVID-19 using the SIR model and machine learning in smart health care. J. Healthc. Eng. (2020)
2.
Zurück zum Zitat Calafiore, G.C., Novara, C., Possieri, C.: A time-varying SIRD model for the COVID-19 contagion in Italy. Ann. Rev. Control (2020) Calafiore, G.C., Novara, C., Possieri, C.: A time-varying SIRD model for the COVID-19 contagion in Italy. Ann. Rev. Control (2020)
3.
Zurück zum Zitat Chen, H., Cox, S.H.: An option-based operational risk management model for pandemics. North Am. Actuarial J. 13(1), 54–76 (2009)MathSciNetCrossRef Chen, H., Cox, S.H.: An option-based operational risk management model for pandemics. North Am. Actuarial J. 13(1), 54–76 (2009)MathSciNetCrossRef
4.
Zurück zum Zitat Christensen, P.A., Olsen, R.J., Long, S.W., Snehal, R., Davis, J.J., Saavedra, M.O., Reppond, K., Shyer, M.N., Cambric, J., Gadd, R., et al.: Signals of significantly increased vaccine breakthrough, decreased hospitalization rates, and less severe disease in patients with COVID-19 caused by the Omicron variant of SARS-CoV-2 in Houston, Texas. Am. J. Pathol. (2022) Christensen, P.A., Olsen, R.J., Long, S.W., Snehal, R., Davis, J.J., Saavedra, M.O., Reppond, K., Shyer, M.N., Cambric, J., Gadd, R., et al.: Signals of significantly increased vaccine breakthrough, decreased hospitalization rates, and less severe disease in patients with COVID-19 caused by the Omicron variant of SARS-CoV-2 in Houston, Texas. Am. J. Pathol. (2022)
5.
Zurück zum Zitat Cooper, I., Mondal, A., Antonopoulos, C.G.: A SIR model assumption for the spread of covid-19 in different communities. Chaos Solitons Fractals 139, 110057 (2020)MathSciNetCrossRef Cooper, I., Mondal, A., Antonopoulos, C.G.: A SIR model assumption for the spread of covid-19 in different communities. Chaos Solitons Fractals 139, 110057 (2020)MathSciNetCrossRef
6.
Zurück zum Zitat Dieu, N.T., Nguyen, D.H., Du, N.H., Yin, G.: Classification of asymptotic behavior in a stochastic sir model. SIAM J. Appl. Dyn. Syst. 15(2), 1062–1084 (2016)MathSciNetCrossRef Dieu, N.T., Nguyen, D.H., Du, N.H., Yin, G.: Classification of asymptotic behavior in a stochastic sir model. SIAM J. Appl. Dyn. Syst. 15(2), 1062–1084 (2016)MathSciNetCrossRef
7.
Zurück zum Zitat Donthu, N., Gustafsson, A.: Effects of covid-19 on business and research. J. Bus. Res. 117, 284–289 (2020)CrossRef Donthu, N., Gustafsson, A.: Effects of covid-19 on business and research. J. Bus. Res. 117, 284–289 (2020)CrossRef
8.
Zurück zum Zitat El Koufi, A., Adnani, J., Bennar, A., Yousfi, N.: Analysis of a stochastic SIR model with vaccination and nonlinear incidence rate. Int. J. Differ. Equ. (2019) El Koufi, A., Adnani, J., Bennar, A., Yousfi, N.: Analysis of a stochastic SIR model with vaccination and nonlinear incidence rate. Int. J. Differ. Equ. (2019)
9.
Zurück zum Zitat Ferguson, N.M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A., Cucunubá, Z., Cuomo-Dannenburg, G., et al.: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand (2020) Ferguson, N.M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A., Cucunubá, Z., Cuomo-Dannenburg, G., et al.: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand (2020)
10.
Zurück zum Zitat Gray, A., Greenhalgh, D., Hu, L., Mao, X., Pan, J.: A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 71(3), 876–902 (2011)MathSciNetCrossRef Gray, A., Greenhalgh, D., Hu, L., Mao, X., Pan, J.: A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 71(3), 876–902 (2011)MathSciNetCrossRef
11.
Zurück zum Zitat Hasan, A., Putri, E.R., Susanto, H., Nuraini, N.: Data-driven modeling and forecasting of COVID-19 outbreak for public policy making. ISA Trans. (2021) Hasan, A., Putri, E.R., Susanto, H., Nuraini, N.: Data-driven modeling and forecasting of COVID-19 outbreak for public policy making. ISA Trans. (2021)
12.
Zurück zum Zitat Hasan, A., Susanto, H., Tjahjono, V., Kusdiantara, R., Putri, E., Nuraini, N., Hadisoemarto, P.: A new estimation method for COVID-19 time-varying reproduction number using active cases. Sci. Rep. 12(1), 1–9 (2022)CrossRef Hasan, A., Susanto, H., Tjahjono, V., Kusdiantara, R., Putri, E., Nuraini, N., Hadisoemarto, P.: A new estimation method for COVID-19 time-varying reproduction number using active cases. Sci. Rep. 12(1), 1–9 (2022)CrossRef
13.
Zurück zum Zitat Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. London. Ser. A Containing Pap. Math. Phys. Charact. 115(772), 700–721 (1927) Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. London. Ser. A Containing Pap. Math. Phys. Charact. 115(772), 700–721 (1927)
14.
Zurück zum Zitat McCall, J.: Genetic algorithms for modelling and optimisation. J. Comput. Appl. Math. 184(1), 205–222 (2005)MathSciNetCrossRef McCall, J.: Genetic algorithms for modelling and optimisation. J. Comput. Appl. Math. 184(1), 205–222 (2005)MathSciNetCrossRef
15.
Zurück zum Zitat Miao, A., Zhang, T., Zhang, J., Wang, C.: Dynamics of a stochastic SIR model with both horizontal and vertical transmission. J. Appl. Anal. Comput 8(4), 1108–1121 (2018)MathSciNet Miao, A., Zhang, T., Zhang, J., Wang, C.: Dynamics of a stochastic SIR model with both horizontal and vertical transmission. J. Appl. Anal. Comput 8(4), 1108–1121 (2018)MathSciNet
16.
Zurück zum Zitat Ndaïrou, F., Area, I., Nieto, J.J., Torres, D.F.: Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos Solitons Fractals 135, 109846 (2020)MathSciNetCrossRef Ndaïrou, F., Area, I., Nieto, J.J., Torres, D.F.: Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos Solitons Fractals 135, 109846 (2020)MathSciNetCrossRef
17.
Zurück zum Zitat Putri, E.R., Iqbal, M., Shahab, M.L., Fadhilah, H.N., Mukhlash, I., Arif, D.K., Apriliani, E., Susanto, H.: COVID-19 outbreak prediction in Indonesia based on machine learning and SIRD-based hybrid methods. Nonlinear Dyn. Syst. Theory 21(5), 495 (2021)MathSciNet Putri, E.R., Iqbal, M., Shahab, M.L., Fadhilah, H.N., Mukhlash, I., Arif, D.K., Apriliani, E., Susanto, H.: COVID-19 outbreak prediction in Indonesia based on machine learning and SIRD-based hybrid methods. Nonlinear Dyn. Syst. Theory 21(5), 495 (2021)MathSciNet
18.
Zurück zum Zitat Rahimi, I., Gandomi, A.H., Asteris, P.G., Chen, F.: Analysis and prediction of COVID-19 using SIR, SEIQR and machine learning models: Australia, Italy and UK cases. Information 12(3), 109 (2021)CrossRef Rahimi, I., Gandomi, A.H., Asteris, P.G., Chen, F.: Analysis and prediction of COVID-19 using SIR, SEIQR and machine learning models: Australia, Italy and UK cases. Information 12(3), 109 (2021)CrossRef
19.
Zurück zum Zitat Rihan, F.A., Alsakaji, H.J., Rajivganthi, C.: Stochastic SIRC epidemic model with time-delay for covid-19. Adv. Differ. Equ. 2020(1), 1–20 (2020)MathSciNetCrossRef Rihan, F.A., Alsakaji, H.J., Rajivganthi, C.: Stochastic SIRC epidemic model with time-delay for covid-19. Adv. Differ. Equ. 2020(1), 1–20 (2020)MathSciNetCrossRef
20.
Zurück zum Zitat Tjahjono, V.R., Kurniawan, H., Hakam, A., Putri, E.R., Susanto, H., et al.: Epidemic modeling of COVID-19 in the ASEAN countries using a genetic partial fitting algorithm with the presence of a second wave. J. Appl. Sci. Eng. 24(6), 900–914 (2021) Tjahjono, V.R., Kurniawan, H., Hakam, A., Putri, E.R., Susanto, H., et al.: Epidemic modeling of COVID-19 in the ASEAN countries using a genetic partial fitting algorithm with the presence of a second wave. J. Appl. Sci. Eng. 24(6), 900–914 (2021)
21.
Zurück zum Zitat Tornatore, E., Buccellato, S.M., Vetro, P.: Stability of a stochastic SIR system. Phys. A 354, 111–126 (2005)CrossRef Tornatore, E., Buccellato, S.M., Vetro, P.: Stability of a stochastic SIR system. Phys. A 354, 111–126 (2005)CrossRef
Metadaten
Titel
A Moving Average Genetic Algorithm (MA-GA) for Estimating the COVID-19 Dynamic Based on a Stochastic SIRD Model
verfasst von
Endah R. M. Putri
Aldi E. W. Widianto
Amirul Hakam
Venansius R. Tjahjono
Hadi Susanto
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2136-8_13

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.