Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

27.09.2019 | Research Article - Computer Engineering and Computer Science | Ausgabe 4/2020

Arabian Journal for Science and Engineering 4/2020

A Multi-criteria Collaborative Filtering Recommender System Using Learning-to-Rank and Rank Aggregation

Zeitschrift:
Arabian Journal for Science and Engineering > Ausgabe 4/2020
Autoren:
Abderrahmane Kouadria, Omar Nouali, Mohammad Yahya H. Al-Shamri

Abstract

Recommender system suggests a top-N list from unseen items for its users through a prediction or a ranking order process. From the recommendation perspective, the item’s order in the generated list is more important than its predicted rating. Moreover, finding the top-N list for a multi-criteria recommendation is a challenging problem as we have many criterions for each item. One can find the average over all criteria; however, this requires a score from each criterion and hence a compensation effect will occur. This resembles many prediction-based recommendation systems working in parallel. Alternately, this paper proposes a three-step hybrid ranking order system for finding the top-N list for the multi-criteria recommendation system. The first step decomposes the multi-criteria user-item matrix into many single-rating user-item matrices while the second step finds partial-ranked lists for each item using a learning-to-rank method. This allows us to reflect the interest of the user for each criterion and then pass on this information for the next stage. The last step aggregates the partial-ranked lists into a global-ranked list using a ranking aggregation method. This will reduce the processing time and improve the recommendation quality by representing the user preference for each criterion. Three different sets of experiments are conducted on Yahoo!Movie dataset, and the results show that the proposed multi-criteria-ranking approach outperforms both the traditional no-ranking item-based collaborative recommendation and single-criteria-ranking approach that uses two popular learning-to-rank methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2020

Arabian Journal for Science and Engineering 4/2020 Zur Ausgabe

Research Article - Computer Engineering and Computer Science

Topic-Based Image Caption Generation

Research Article - Computer Engineering and Computer Science

An Enhanced Eye-Tracking Approach Using Pipeline Computation

Research Article - Computer Engineering and Computer Science

An Efficient Inverter Logic in Quantum-Dot Cellular Automata for Emerging Nanocircuits

Research Article-Computer Engineering and Computer Science

Effective Removal of Privacy Breaches in Disassociated Transactional Datasets

Review Article - Computer Engineering and Computer Science

Bad Smell Detection Using Machine Learning Techniques: A Systematic Literature Review

RESEARCH ARTICLE - SPECIAL ISSUE - INTELLIGENT COMPUTING and INTERDISCIPLINARY APPLICATIONS

A Comparative Analysis on Effort Estimation for Agile and Non-agile Software Projects Using DBN-ALO

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen. 

    Bildnachweise