Skip to main content
Erschienen in: Journal of Scientific Computing 3/2018

05.11.2017

A Multi-Level Mixed Element Method for the Eigenvalue Problem of Biharmonic Equation

verfasst von: Shuo Zhang, Yingxia Xi, Xia Ji

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we discuss approximating the eigenvalue problem of biharmonic equation. We first present an equivalent mixed formulation which admits natural nested discretization. Then, we present multi-level finite element schemes by implementing the algorithm as in Lin and Xie (Math Comput 84:71–88, 2015) to the nested discretizations on a series of nested grids. The multi-level mixed scheme for the biharmonic eigenvalue problem possesses optimal convergence rate and optimal computational cost. Both theoretical analysis and numerical verifications are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In this paper, \(\lesssim \), \(\gtrsim \), and https://static-content.springer.com/image/art%3A10.1007%2Fs10915-017-0592-7/MediaObjects/10915_2017_592_IEq75_HTML.gif denote \(\leqslant \), \(\geqslant \), and \(=\) up to a constant respectively. The hidden constants depend on the domain, and, when triangulation is involved, they also depend on the shape-regularity of the triangulation, but they do not depend on h or any other mesh parameter.
 
Literatur
1.
Zurück zum Zitat Andreev, A., Lazarov, R., Racheva, M.: Postprocessing and higher order convergence of mixed finite element approximations of biharmonic eigenvalue problem. J. Comput. Appl. Math. 182, 333–349 (2005)MathSciNetCrossRefMATH Andreev, A., Lazarov, R., Racheva, M.: Postprocessing and higher order convergence of mixed finite element approximations of biharmonic eigenvalue problem. J. Comput. Appl. Math. 182, 333–349 (2005)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods Handbook of Numerical Analysis (Part 2). Elsevier, Amsterdam (1991) Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods Handbook of Numerical Analysis (Part 2). Elsevier, Amsterdam (1991)
3.
Zurück zum Zitat Bernardi, D., Girault, V., Maday, Y.: Mixed spectral element approximation of the Navier–Stokes equations in the stream-function and vorticity formulation. IMA J. Numer. Anal. 12, 565–608 (1992)MathSciNetCrossRefMATH Bernardi, D., Girault, V., Maday, Y.: Mixed spectral element approximation of the Navier–Stokes equations in the stream-function and vorticity formulation. IMA J. Numer. Anal. 12, 565–608 (1992)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Bi, H., Yang, Y.: A two-grid method of the non-conforming Crouzeix–Raviart element for the Steklov eigenvalue problem. Appl. Math. Comput. 217, 9669–9678 (2011)MathSciNetMATH Bi, H., Yang, Y.: A two-grid method of the non-conforming Crouzeix–Raviart element for the Steklov eigenvalue problem. Appl. Math. Comput. 217, 9669–9678 (2011)MathSciNetMATH
5.
Zurück zum Zitat Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer, Berlin (2013)CrossRefMATH Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer, Berlin (2013)CrossRefMATH
6.
Zurück zum Zitat Bogner, F., Fox, F., Schmidt, L.: The generation of interelement compatible stiffness and mass matrices by the use of interpolation formula. AIAA J. 7, 1957–1965 (1965) Bogner, F., Fox, F., Schmidt, L.: The generation of interelement compatible stiffness and mass matrices by the use of interpolation formula. AIAA J. 7, 1957–1965 (1965)
7.
Zurück zum Zitat Brenner, S., Monk, P., Sun, J.: \(C^0\) Interior Penalty Galerkin Method for Biharmonic Eigenvalue Problems, pp. 3–15. Springer, Cham (2015)MATH Brenner, S., Monk, P., Sun, J.: \(C^0\) Interior Penalty Galerkin Method for Biharmonic Eigenvalue Problems, pp. 3–15. Springer, Cham (2015)MATH
8.
Zurück zum Zitat Carstensen, C., Gallistl, D.: Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math. 126, 33–51 (2014)MathSciNetCrossRefMATH Carstensen, C., Gallistl, D.: Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math. 126, 33–51 (2014)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Chang, K., Lin, Y.: Lecture Notes of Functional Analysis. Peking University Press, Beijing (1990) Chang, K., Lin, Y.: Lecture Notes of Functional Analysis. Peking University Press, Beijing (1990)
10.
Zurück zum Zitat Chen, W., Lin, Q.: Asymptotic expansion and extrapolation for the eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet–Raviart scheme. Adv. Comput. Math. 27, 95–106 (2007)MathSciNetCrossRefMATH Chen, W., Lin, Q.: Asymptotic expansion and extrapolation for the eigenvalue approximation of the biharmonic eigenvalue problem by Ciarlet–Raviart scheme. Adv. Comput. Math. 27, 95–106 (2007)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Chien, C., Jeng, B.: A two-grid discretization scheme for semilinear elliptic eigenvalue problems. SIAM J. Sci. Comput. 27, 287–1304 (2006)MathSciNetCrossRefMATH Chien, C., Jeng, B.: A two-grid discretization scheme for semilinear elliptic eigenvalue problems. SIAM J. Sci. Comput. 27, 287–1304 (2006)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Ciarlet, P., Raviart, P.: A mixed finite element method for the biharmonic equation. In: Boor, C.D. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–145. Academic Press, New York (1974)CrossRef Ciarlet, P., Raviart, P.: A mixed finite element method for the biharmonic equation. In: Boor, C.D. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 125–145. Academic Press, New York (1974)CrossRef
13.
Zurück zum Zitat Dai, X., Zhou, A.: Three-scale finite element discretizations for quantum eigenvalue problems. SIAM J. Numer. Anal. 46, 295–324 (2008)MathSciNetCrossRefMATH Dai, X., Zhou, A.: Three-scale finite element discretizations for quantum eigenvalue problems. SIAM J. Numer. Anal. 46, 295–324 (2008)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Falk, R.: Approximation of the biharmonic equation by a mixed finite element method. SIAM J. Numer. Anal. 15, 556–567 (1978)MathSciNetCrossRefMATH Falk, R.: Approximation of the biharmonic equation by a mixed finite element method. SIAM J. Numer. Anal. 15, 556–567 (1978)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Feng, C., Zhang, S.: Optimal solver for Morley element discretization of biharmonic equation on shape-regular grids. J. Comput. Math. 34, 159–173 (2016)MathSciNetCrossRefMATH Feng, C., Zhang, S.: Optimal solver for Morley element discretization of biharmonic equation on shape-regular grids. J. Comput. Math. 34, 159–173 (2016)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Gallistl, D.: Morley finite element method for the eigenvalues of the biharmonic operator. IMA J. Numer. Anal. 35, 1779–1811 (2014)MathSciNetCrossRefMATH Gallistl, D.: Morley finite element method for the eigenvalues of the biharmonic operator. IMA J. Numer. Anal. 35, 1779–1811 (2014)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Girault, V., Raviart, P.: Finite Element Methods for Navier–Stokes Equation, Springer Series in Computational Mathematics. Springer, Berlin (1986)CrossRef Girault, V., Raviart, P.: Finite Element Methods for Navier–Stokes Equation, Springer Series in Computational Mathematics. Springer, Berlin (1986)CrossRef
18.
Zurück zum Zitat Hellan, K.: Analysis of elastic plates in flexure by a simplified finite element method. Acta Polytechn. Scand. Civ. Eng. Buil. Constr. Ser. 46, 1–29 (1967)MATH Hellan, K.: Analysis of elastic plates in flexure by a simplified finite element method. Acta Polytechn. Scand. Civ. Eng. Buil. Constr. Ser. 46, 1–29 (1967)MATH
19.
Zurück zum Zitat Hermann, L.: Finite element bending analysis for plates. J. Eng. Mech. Div. ASCE 93, 13–26 (1967) Hermann, L.: Finite element bending analysis for plates. J. Eng. Mech. Div. ASCE 93, 13–26 (1967)
20.
Zurück zum Zitat Hu, J., Huang, Y., Lin, Q.: Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods. J. Sci. Comput. 61, 196–221 (2014)MathSciNetCrossRefMATH Hu, J., Huang, Y., Lin, Q.: Lower bounds for eigenvalues of elliptic operators: by nonconforming finite element methods. J. Sci. Comput. 61, 196–221 (2014)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Hu, J., Huang, Y., Shen, Q.: Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods. Numer. Math. 131, 273–302 (2015)MathSciNetCrossRefMATH Hu, J., Huang, Y., Shen, Q.: Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods. Numer. Math. 131, 273–302 (2015)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Ishihara, K.: A mixed finite element method for the biharmonic eigenvalue problem of plate bending. Publ. Res. Inst. Math. Sci. Kyoto Univ. 14, 399–414 (1978)MathSciNetCrossRefMATH Ishihara, K.: A mixed finite element method for the biharmonic eigenvalue problem of plate bending. Publ. Res. Inst. Math. Sci. Kyoto Univ. 14, 399–414 (1978)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Ji, X., Sun, J., Xie, H.: A multigrid method for Helmholtz transmission eigenvalue problems. J. Sci. Comput. 60, 276–294 (2014)MathSciNetCrossRefMATH Ji, X., Sun, J., Xie, H.: A multigrid method for Helmholtz transmission eigenvalue problems. J. Sci. Comput. 60, 276–294 (2014)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Jia, S., Xie, H., Yin, X., Gao, S.: Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods. Numer. Methods Partial Differ. Equ. 24, 435–448 (2008)MathSciNetCrossRefMATH Jia, S., Xie, H., Yin, X., Gao, S.: Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods. Numer. Methods Partial Differ. Equ. 24, 435–448 (2008)MathSciNetCrossRefMATH
25.
27.
Zurück zum Zitat Krendl, W., Rafetseder, K., Zulehner, W.: A two-level method for nonsymmetric eigenvalue problems. Electron. T. Numer. Anal. 45, 257–282 (2016)MATH Krendl, W., Rafetseder, K., Zulehner, W.: A two-level method for nonsymmetric eigenvalue problems. Electron. T. Numer. Anal. 45, 257–282 (2016)MATH
28.
Zurück zum Zitat Li, Q., Yang, Y.: A two-grid discretization scheme for the Steklov eigenvalue problem. J. Appl. Math. Comput. 36, 129–139 (2011)MathSciNetCrossRefMATH Li, Q., Yang, Y.: A two-grid discretization scheme for the Steklov eigenvalue problem. J. Appl. Math. Comput. 36, 129–139 (2011)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Li, Z., Zhang, S.: A stable mixed element method for biharmonic equation with firstorder function spaces. Comput. Methods Appl. Math. 17, 601–616 (2017)MathSciNet Li, Z., Zhang, S.: A stable mixed element method for biharmonic equation with firstorder function spaces. Comput. Methods Appl. Math. 17, 601–616 (2017)MathSciNet
30.
Zurück zum Zitat Lin, Q.: Some problems about the approximate solution for operator equations. Acta Math. Sin. 22, 219–230 (1979)MATH Lin, Q.: Some problems about the approximate solution for operator equations. Acta Math. Sin. 22, 219–230 (1979)MATH
31.
Zurück zum Zitat Lin, Q., Luo, F., Xie, H.: A multilevel correction method for Stokes eigenvalue problems and its applications. Math. Methods Appl. Sci. 38, 4540–4552 (2015)MathSciNetCrossRefMATH Lin, Q., Luo, F., Xie, H.: A multilevel correction method for Stokes eigenvalue problems and its applications. Math. Methods Appl. Sci. 38, 4540–4552 (2015)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Lin, Q., Xie, H.: An observation on Aubin–Nitsche lemma and its applications. Math. Pract. Theory 41, 247–258 (2011)MathSciNetMATH Lin, Q., Xie, H.: An observation on Aubin–Nitsche lemma and its applications. Math. Pract. Theory 41, 247–258 (2011)MathSciNetMATH
33.
Zurück zum Zitat Lin, Q., Xie, H.: The asymptotic lower bounds of eigenvalue problems by nonconforming finite element methods. Math. Pract. Theory 42, 219–226 (2012)MathSciNetMATH Lin, Q., Xie, H.: The asymptotic lower bounds of eigenvalue problems by nonconforming finite element methods. Math. Pract. Theory 42, 219–226 (2012)MathSciNetMATH
35.
Zurück zum Zitat Lin, Q., Xie, H., Xu, F.: Multilevel correction adaptive finite element method for semilinear elliptic equation. Appl. Math. 60, 527–0550 (2015)MathSciNetCrossRefMATH Lin, Q., Xie, H., Xu, F.: Multilevel correction adaptive finite element method for semilinear elliptic equation. Appl. Math. 60, 527–0550 (2015)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Mora, D., Rodriguez, R.: A piecewise linear finite element method for the buckling and the vibration problems of thin plates. Math. Comput. 78, 1891–1917 (2009)MathSciNetCrossRefMATH Mora, D., Rodriguez, R.: A piecewise linear finite element method for the buckling and the vibration problems of thin plates. Math. Comput. 78, 1891–1917 (2009)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Xie, H.: A type of multi-level correction scheme for eigenvalue problems by nonconforming finite element methods. BIT Numer. Math. 55, 1243–1266 (2015)MathSciNetCrossRefMATH Xie, H.: A type of multi-level correction scheme for eigenvalue problems by nonconforming finite element methods. BIT Numer. Math. 55, 1243–1266 (2015)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Xie, H., Zhang, Z.: A multilevel correction scheme for nonsymmetric eigenvalue problems by finite element methods. arXiv:1505.06288 (2015) Xie, H., Zhang, Z.: A multilevel correction scheme for nonsymmetric eigenvalue problems by finite element methods. arXiv:​1505.​06288 (2015)
41.
Zurück zum Zitat Xu, J.: A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal. 29, 303–319 (1992)MathSciNetCrossRefMATH Xu, J.: A new class of iterative methods for nonselfadjoint or indefinite problems. SIAM J. Numer. Anal. 29, 303–319 (1992)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Yang, Y., Lin, Q., Bi, H., Li, Q.: Eigenvalue approximations from below using Morley elements. Adv. Comput. Math. 36, 443–450 (2012)MathSciNetCrossRefMATH Yang, Y., Lin, Q., Bi, H., Li, Q.: Eigenvalue approximations from below using Morley elements. Adv. Comput. Math. 36, 443–450 (2012)MathSciNetCrossRefMATH
46.
Zurück zum Zitat Zhou, A.: Multi-level adaptive corrections in finite dimensional approximations. J. Comput. Math. 28, 45–54 (2010)MathSciNetMATH Zhou, A.: Multi-level adaptive corrections in finite dimensional approximations. J. Comput. Math. 28, 45–54 (2010)MathSciNetMATH
Metadaten
Titel
A Multi-Level Mixed Element Method for the Eigenvalue Problem of Biharmonic Equation
verfasst von
Shuo Zhang
Yingxia Xi
Xia Ji
Publikationsdatum
05.11.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0592-7

Weitere Artikel der Ausgabe 3/2018

Journal of Scientific Computing 3/2018 Zur Ausgabe