Skip to main content
Erschienen in:

25.09.2024

A multi-objective approach for optimizing IoT applications offloading in fog–cloud environments with NSGA-II

verfasst von: Ibtissem Mokni, Sonia Yassa

Erschienen in: The Journal of Supercomputing | Ausgabe 19/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Internet of Things (IoT) has become a pervasive phenomenon, with applications in a multitude of sectors, including healthcare, smart agriculture, smart cities, transportation, and water management. This has led to a significant generation of Big Data. In order to process this substantial volume of data efficiently, there is a pressing need for a platform capable of handling large quantities. However, real-time applications face challenges in cloud processing due to high latency. As a complementary infrastructure to the cloud, fog computing emerges as a viable solution by facilitating task processing, networking, and data storage in cloud data centers accessible to mobile users. The offloading of tasks represents a promising solution to the resource constraints inherent in IoT applications, particularly within the context of fog computing. This process entails the execution of particular components of mobile applications within a fog–cloud environment, to reduce execution time and energy consumption. The objective of our research is to optimize task offloading in IoT within heterogeneous environments, taking into account conflicting constraints. This optimization challenge is formulated as a multi-objective problem, with a particular focus on energy consumption and latency, as well as quality of service metrics. The proposed solution, TOF-NSGAII, is designed to respect the finite resources of fog computing, balancing workloads to meet the latency requirements of IoT tasks. The widely employed meta-heuristic, the non-dominated sorting genetic algorithm (NSGA-II), has been adapted to generate a set of non-dominated multi-objective task offloading optimization solutions, considering both energy consumption and latency. The experimental results demonstrate the efficacy of TOF-NSGAII in generating task offloading solutions that distribute executed tasks between fog and cloud computing environments in a judicious manner, based on their specific requirements. Furthermore, the generated non-dominated solutions demonstrate optimality in terms of energy consumption, with an average reduction of 12.18% compared to alternative approaches. It is noteworthy that our approach introduces only a marginal increase in latency, amounting to 0.38%, which can be considered negligible.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aazam M et al (2020) Cloud of things (CoT): cloud-fog-IoT task offloading for sustainable internet of things. IEEE Trans Sustain Comput 7(1):87–98CrossRef Aazam M et al (2020) Cloud of things (CoT): cloud-fog-IoT task offloading for sustainable internet of things. IEEE Trans Sustain Comput 7(1):87–98CrossRef
2.
Zurück zum Zitat Abdel-Kader RF, El-Sayad NE, Rizk RY (2021) Efficient energy and completion time for dependent task computation 4.0 offloading algorithm in industry. PLoS ONE 16(6):e0252756CrossRef Abdel-Kader RF, El-Sayad NE, Rizk RY (2021) Efficient energy and completion time for dependent task computation 4.0 offloading algorithm in industry. PLoS ONE 16(6):e0252756CrossRef
3.
Zurück zum Zitat Alasmari MK, Alwakeel SS, Alohali YA (2023) A multi-classifiers based algorithm for energy efficient tasks offloading in fog computing. Sensors 23(16):7209CrossRef Alasmari MK, Alwakeel SS, Alohali YA (2023) A multi-classifiers based algorithm for energy efficient tasks offloading in fog computing. Sensors 23(16):7209CrossRef
4.
Zurück zum Zitat Alfakih T et al (2020) Task offloading and resource allocation for mobile edge computing by deep reinforcement learning based on SARSA. IEEE Access 8:54074–54084CrossRef Alfakih T et al (2020) Task offloading and resource allocation for mobile edge computing by deep reinforcement learning based on SARSA. IEEE Access 8:54074–54084CrossRef
5.
Zurück zum Zitat AlShathri SI, Chelloug SA, Hassan DSM (2022) Parallel meta-heuristics for solving dynamic offloading in fog computing. Mathematics 10(8):1258CrossRef AlShathri SI, Chelloug SA, Hassan DSM (2022) Parallel meta-heuristics for solving dynamic offloading in fog computing. Mathematics 10(8):1258CrossRef
6.
Zurück zum Zitat Baek J, Kaddoum G (2020) Heterogeneous task offloading and resource allocations via deep recurrent reinforcement learning in partial observable multifog networks. IEEE Internet Things J 8(2):1041–1056CrossRef Baek J, Kaddoum G (2020) Heterogeneous task offloading and resource allocations via deep recurrent reinforcement learning in partial observable multifog networks. IEEE Internet Things J 8(2):1041–1056CrossRef
7.
8.
Zurück zum Zitat Cloud H (2011) The nist definition of cloud computing. Natl Inst Sci Technol Spec Publ 800:145 Cloud H (2011) The nist definition of cloud computing. Natl Inst Sci Technol Spec Publ 800:145
9.
Zurück zum Zitat Cui K et al (2019) Learning-based task offloading for marine fog-cloud computing networks of USV cluster. Electronics 8(11):1287CrossRef Cui K et al (2019) Learning-based task offloading for marine fog-cloud computing networks of USV cluster. Electronics 8(11):1287CrossRef
10.
Zurück zum Zitat Deb K et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRef Deb K et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRef
11.
Zurück zum Zitat El Idrissi M, Elbeqqali O, Jamal R (2019) A review on relationship between Iot-cloud computing-fog computing (applications and challenges). In: (2019) third international Conference on Intelligent Computing in Data Sciences (ICDS). IEEE, pp 1–7 El Idrissi M, Elbeqqali O, Jamal R (2019) A review on relationship between Iot-cloud computing-fog computing (applications and challenges). In: (2019) third international Conference on Intelligent Computing in Data Sciences (ICDS). IEEE, pp 1–7
12.
Zurück zum Zitat Haghnegahdar L, Joshi SS, Dahotre NB (2022) From IoT-based cloud manufacturing approach to intelligent additive manufacturing: industrial internet of things—an overview. Int J Adv Manuf Technol 1–18 Haghnegahdar L, Joshi SS, Dahotre NB (2022) From IoT-based cloud manufacturing approach to intelligent additive manufacturing: industrial internet of things—an overview. Int J Adv Manuf Technol 1–18
13.
Zurück zum Zitat Hussein MK, Mousa MH (2020) Efficient task offloading for IoT-based applications in fog computing using ant colony optimization. IEEE Access 8:37191–37201CrossRef Hussein MK, Mousa MH (2020) Efficient task offloading for IoT-based applications in fog computing using ant colony optimization. IEEE Access 8:37191–37201CrossRef
14.
Zurück zum Zitat Jafari V, Rezvani MH (2021) Joint optimization of energy consumption and time delay in IoT-fog-cloud computing environments using NSGA-II metaheuristic algorithm. J Amb Intell Human Comput 1–24 Jafari V, Rezvani MH (2021) Joint optimization of energy consumption and time delay in IoT-fog-cloud computing environments using NSGA-II metaheuristic algorithm. J Amb Intell Human Comput 1–24
15.
Zurück zum Zitat Jazayeri F, Shahidinejad A, Ghobaei-Arani M (2021) Autonomous computation offloading and auto-scaling the in the mobile fog computing: a deep reinforcement learning-based approach. J Ambient Intell Humaniz Comput 12(8):8265–8284CrossRef Jazayeri F, Shahidinejad A, Ghobaei-Arani M (2021) Autonomous computation offloading and auto-scaling the in the mobile fog computing: a deep reinforcement learning-based approach. J Ambient Intell Humaniz Comput 12(8):8265–8284CrossRef
16.
Zurück zum Zitat Keshavarznejad M, Rezvani MH, Adabi S (2021) Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms. Clust Comput 24(3):1825–1853CrossRef Keshavarznejad M, Rezvani MH, Adabi S (2021) Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms. Clust Comput 24(3):1825–1853CrossRef
17.
Zurück zum Zitat Khan EUY, Soomro TR, Brohi MN (2022) iFogSim: a tool for simulating cloud and fog applications. In: 2022 International Conference on Cyber Resilience (ICCR). IEEE, pp 01–05 Khan EUY, Soomro TR, Brohi MN (2022) iFogSim: a tool for simulating cloud and fog applications. In: 2022 International Conference on Cyber Resilience (ICCR). IEEE, pp 01–05
18.
Zurück zum Zitat Kumari N, Yadav A, Jana PK (2022) Task offloading in fog computing: a survey of algorithms and optimization techniques. Comput Netw 214:109137CrossRef Kumari N, Yadav A, Jana PK (2022) Task offloading in fog computing: a survey of algorithms and optimization techniques. Comput Netw 214:109137CrossRef
19.
Zurück zum Zitat Laroui M et al (2021) Edge and fog computing for IoT: a survey on current research activities and future directions. Comput Commun 180:210–231CrossRef Laroui M et al (2021) Edge and fog computing for IoT: a survey on current research activities and future directions. Comput Commun 180:210–231CrossRef
20.
Zurück zum Zitat Li G et al (2019) Energy consumption optimization with a delay threshold in cloud-fog cooperation computing. IEEE Access 7:159688–159697CrossRef Li G et al (2019) Energy consumption optimization with a delay threshold in cloud-fog cooperation computing. IEEE Access 7:159688–159697CrossRef
21.
Zurück zum Zitat Liu J et al (2022) Auction-based dependent task offloading for IoT users in edge clouds. IEEE Internet Things J 10(6):4907–4921CrossRef Liu J et al (2022) Auction-based dependent task offloading for IoT users in edge clouds. IEEE Internet Things J 10(6):4907–4921CrossRef
22.
Zurück zum Zitat Liu J et al (2024) Task graph offloading via deep reinforcement learning in mobile edge computing. Futur Gener Comput Syst 158:545–555CrossRef Liu J et al (2024) Task graph offloading via deep reinforcement learning in mobile edge computing. Futur Gener Comput Syst 158:545–555CrossRef
23.
Zurück zum Zitat Mokni M et al (2022) Cooperative agents-based approach for workflow scheduling on fog-cloud computing. J Ambient Intell Humaniz Comput 13(10):4719–4738CrossRef Mokni M et al (2022) Cooperative agents-based approach for workflow scheduling on fog-cloud computing. J Ambient Intell Humaniz Comput 13(10):4719–4738CrossRef
24.
Zurück zum Zitat Mukherjee M, et al (2020) Distributed deep learning-based task offloading for UAV-enabled mobile edge computing. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, pp 1208–1212 Mukherjee M, et al (2020) Distributed deep learning-based task offloading for UAV-enabled mobile edge computing. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, pp 1208–1212
25.
Zurück zum Zitat Munene KI et al (2022) A throughput drop estimation model and its application to joint optimization of transmission power, frequency channel, and channel bonding in IEEE 802.11 n WLAN for large-scale IoT environments. Internet of Things 20:100583CrossRef Munene KI et al (2022) A throughput drop estimation model and its application to joint optimization of transmission power, frequency channel, and channel bonding in IEEE 802.11 n WLAN for large-scale IoT environments. Internet of Things 20:100583CrossRef
26.
Zurück zum Zitat Nittala SSS (2022) Service innovation enabled by Internet of Things and cloud computing-a service-dominant logic perspective. Technol Anal Strateg Manag 34(4):433–446CrossRef Nittala SSS (2022) Service innovation enabled by Internet of Things and cloud computing-a service-dominant logic perspective. Technol Anal Strateg Manag 34(4):433–446CrossRef
27.
Zurück zum Zitat Peng G et al (2021) Constrained multiobjective optimization for IoT-enabled computation offloading in collaborative edge and cloud computing. IEEE Internet Things J 8(17):13723–13736CrossRef Peng G et al (2021) Constrained multiobjective optimization for IoT-enabled computation offloading in collaborative edge and cloud computing. IEEE Internet Things J 8(17):13723–13736CrossRef
28.
Zurück zum Zitat Rahbari D, Nickray M (2020) Task offloading in mobile fog computing by classification and regression tree. Peer-to-Peer Netw Appl 13:104–122CrossRef Rahbari D, Nickray M (2020) Task offloading in mobile fog computing by classification and regression tree. Peer-to-Peer Netw Appl 13:104–122CrossRef
29.
Zurück zum Zitat Satyanarayanan M, et al (2021) The role of edge offload for hardware-accelerated mobile devices. In: Proceedings of the 22nd international workshop on mobile computing systems and applications, pp 22–29 Satyanarayanan M, et al (2021) The role of edge offload for hardware-accelerated mobile devices. In: Proceedings of the 22nd international workshop on mobile computing systems and applications, pp 22–29
30.
Zurück zum Zitat Shahidinejad A, Ghobaei-Arani M (2022) A metaheuristic-based computation offloading in edge-cloud environment. J Ambient Intell Humaniz Comput 13(5):2785–2794CrossRef Shahidinejad A, Ghobaei-Arani M (2022) A metaheuristic-based computation offloading in edge-cloud environment. J Ambient Intell Humaniz Comput 13(5):2785–2794CrossRef
31.
Zurück zum Zitat Shahryari O-K et al (2021) Energy and task completion time trade-off for task offloading in fog-enabled IoT networks. Pervasive Mob Comput 74:101395CrossRef Shahryari O-K et al (2021) Energy and task completion time trade-off for task offloading in fog-enabled IoT networks. Pervasive Mob Comput 74:101395CrossRef
32.
Zurück zum Zitat Shreyas J et al (2020) Application of computational intelligence techniques for internet of things: an extensive survey. Int J Comput Intell Stud 9(3):234–288 Shreyas J et al (2020) Application of computational intelligence techniques for internet of things: an extensive survey. Int J Comput Intell Stud 9(3):234–288
33.
Zurück zum Zitat Singh R, Gehlot A, Sharma D (2022) Futuristic sustainable energy and technology. CRC Press, New YorkCrossRef Singh R, Gehlot A, Sharma D (2022) Futuristic sustainable energy and technology. CRC Press, New YorkCrossRef
34.
Zurück zum Zitat Sofla MS et al (2022) Towards effective offloading mechanisms in fog computing. Multimedia Tools Appl 81(2):1997CrossRef Sofla MS et al (2022) Towards effective offloading mechanisms in fog computing. Multimedia Tools Appl 81(2):1997CrossRef
35.
Zurück zum Zitat Tran-Dang H, Kim D-S (2023) Cooperation for distributed task offloading in fog computing networks. In: Cooperative and distributed intelligent computation in fog computing: concepts, architectures, and frameworks, pp 33–45 Tran-Dang H, Kim D-S (2023) Cooperation for distributed task offloading in fog computing networks. In: Cooperative and distributed intelligent computation in fog computing: concepts, architectures, and frameworks, pp 33–45
36.
Zurück zum Zitat Tran-Dang H, Kim D-S (2023) Dynamic collaborative task offloading for delay minimization in the heterogeneous fog computing systems. J Commun Netw Tran-Dang H, Kim D-S (2023) Dynamic collaborative task offloading for delay minimization in the heterogeneous fog computing systems. J Commun Netw
37.
Zurück zum Zitat Tran-Dang H, Kim D-S (2021) FRATO: fog resource based adaptive task offloading for delay-minimizing IoT service provisioning. IEEE Trans Parallel Distrib Syst 32(10):2491–2508CrossRef Tran-Dang H, Kim D-S (2021) FRATO: fog resource based adaptive task offloading for delay-minimizing IoT service provisioning. IEEE Trans Parallel Distrib Syst 32(10):2491–2508CrossRef
38.
Zurück zum Zitat Vemireddy S, Rout RR (2021) Fuzzy reinforcement learning for energy efficient task offloading in vehicular fog computing. Comput Netw 199:108463CrossRef Vemireddy S, Rout RR (2021) Fuzzy reinforcement learning for energy efficient task offloading in vehicular fog computing. Comput Netw 199:108463CrossRef
39.
Zurück zum Zitat Wang K et al (2019) Learning-based task offloading for delay-sensitive applications in dynamic fog networks. IEEE Trans Veh Technol 68(11):11399–11403CrossRef Wang K et al (2019) Learning-based task offloading for delay-sensitive applications in dynamic fog networks. IEEE Trans Veh Technol 68(11):11399–11403CrossRef
40.
Zurück zum Zitat Yadav J, et al (2023) E-MOGWO algorithm for computation offloading in fog computing. In: Intelligent automation and soft computing 36.1 Yadav J, et al (2023) E-MOGWO algorithm for computation offloading in fog computing. In: Intelligent automation and soft computing 36.1
41.
Zurück zum Zitat You Q, Tang B (2021) Efficient task offloading using particle swarm optimization algorithm in edge computing for industrial internet of things. J Cloud Comput 10(1):1–11CrossRef You Q, Tang B (2021) Efficient task offloading using particle swarm optimization algorithm in edge computing for industrial internet of things. J Cloud Comput 10(1):1–11CrossRef
Metadaten
Titel
A multi-objective approach for optimizing IoT applications offloading in fog–cloud environments with NSGA-II
verfasst von
Ibtissem Mokni
Sonia Yassa
Publikationsdatum
25.09.2024
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 19/2024
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-024-06431-z