Skip to main content
Erschienen in: Neural Computing and Applications 2/2017

28.10.2015 | Original Article

A multiplier-less digital design of a bio-inspired stimulator to suppress synchronized regime in a large-scale, sparsely connected neural network

verfasst von: Soheila Nazari, Karim Faez, Mahmood Amiri

Erschienen in: Neural Computing and Applications | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Excessive synchronous firing of neurons is the sign of several neurological disorders such as Parkinson and epilepsy. In addition, growing evidence suggests that astrocytes have significant roles in neural synchronization. Drawing on these concepts and based on the latest studies, a bio-inspired stimulator which essentially is a dynamical model of the astrocyte biophysical model is proposed. The performance of the proposed bio-inspired stimulator is investigated on a large-scale, sparsely connected neural network which models a local cortical population. Next, a multiplier-less digital circuit for the bio-inspired stimulator is designed, and finally, the complete digital circuit of the closed-loop system is implemented in hardware on the ZedBoard development kit. Considering software simulations and hardware FPGA implementation, the proposed bio-inspired stimulator is able to prevent the hyper-synchronous neural firing in a network of excitatory and inhibitory neurons. Based on the obtained results, it is demonstrated that the proposed stimulator has a demand-controlled characteristic and can be a good candidate as a new deep brain stimulation (DBS) technique to effectively suppress the hyper-synchronous neural oscillations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Jiruska P, de Curtis M, Jefferys JG, Schevon CA, Schiff SJ, Schindler K (2013) Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol 591(4):787–797CrossRef Jiruska P, de Curtis M, Jefferys JG, Schevon CA, Schiff SJ, Schindler K (2013) Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol 591(4):787–797CrossRef
3.
Zurück zum Zitat Blenkinsop A (2013). Computational modelling of normal function and pathology in neural systems: new tools, techniques and results in cortex and basal ganglia. Doctoral dissertation, University of Sheffield Blenkinsop A (2013). Computational modelling of normal function and pathology in neural systems: new tools, techniques and results in cortex and basal ganglia. Doctoral dissertation, University of Sheffield
4.
Zurück zum Zitat Amiri M, Bahrami F, Janahmadi M (2011) Functional modeling of astrocytes in epilepsy: a feedback system perspective. Neural Comput Appl 20(8):1131–1139CrossRef Amiri M, Bahrami F, Janahmadi M (2011) Functional modeling of astrocytes in epilepsy: a feedback system perspective. Neural Comput Appl 20(8):1131–1139CrossRef
6.
Zurück zum Zitat Engel J Jr (2013) Why is there still doubt to cut it out? Epilepsy Curr 13:198–204CrossRef Engel J Jr (2013) Why is there still doubt to cut it out? Epilepsy Curr 13:198–204CrossRef
7.
Zurück zum Zitat Engel J, McDermott MP, Wiebe S et al (2012) Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA 307:922–930CrossRef Engel J, McDermott MP, Wiebe S et al (2012) Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA 307:922–930CrossRef
8.
Zurück zum Zitat Beleza P (2009) Refractory epilepsy: a clinically oriented review. Eur Neurol 62:65–71CrossRef Beleza P (2009) Refractory epilepsy: a clinically oriented review. Eur Neurol 62:65–71CrossRef
9.
Zurück zum Zitat Laxpati NG, Kasoff WS, Gross RE (2014) Deep brain stimulation for the treatment of epilepsy: circuits, targets, and trials. Neurotherapeutics 11(3):508–526CrossRef Laxpati NG, Kasoff WS, Gross RE (2014) Deep brain stimulation for the treatment of epilepsy: circuits, targets, and trials. Neurotherapeutics 11(3):508–526CrossRef
11.
Zurück zum Zitat Tukhlina N, Rosenblum M (2008) Feedback suppression of neural synchrony in two interacting populations by vanishing stimulation. J Biol Phys 34(3–4):301–314CrossRef Tukhlina N, Rosenblum M (2008) Feedback suppression of neural synchrony in two interacting populations by vanishing stimulation. J Biol Phys 34(3–4):301–314CrossRef
12.
Zurück zum Zitat Omel‘chenko OE, Hauptmann C, Maistrenko YL, Tass PA (2008) Collective dynamics of globally coupled phase oscillators under multisite delayed feedback stimulation. Phys D Nonlinear Phenom 237(3):365–384MathSciNetCrossRefMATH Omel‘chenko OE, Hauptmann C, Maistrenko YL, Tass PA (2008) Collective dynamics of globally coupled phase oscillators under multisite delayed feedback stimulation. Phys D Nonlinear Phenom 237(3):365–384MathSciNetCrossRefMATH
13.
Zurück zum Zitat Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72(2):370–384CrossRef Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72(2):370–384CrossRef
14.
Zurück zum Zitat Priori A, Foffani G, Rossi L, Marceglia S (2013) Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol 245:77–86CrossRef Priori A, Foffani G, Rossi L, Marceglia S (2013) Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol 245:77–86CrossRef
15.
Zurück zum Zitat Amiri M, Montaseri G, Bahrami F (2011) On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol Cybern 105(2):153–166MathSciNetCrossRefMATH Amiri M, Montaseri G, Bahrami F (2011) On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol Cybern 105(2):153–166MathSciNetCrossRefMATH
16.
Zurück zum Zitat Ranjbar M, Amiri M (2015) An analog astrocyte–neuron interaction circuit for neuromorphic applications. J Comput Electron 14(3):694–706CrossRef Ranjbar M, Amiri M (2015) An analog astrocyte–neuron interaction circuit for neuromorphic applications. J Comput Electron 14(3):694–706CrossRef
18.
Zurück zum Zitat Nazari S, Faez K, Karami E, Amiri M (2014) A digital neuromorphic circuit for a simplified model of astrocyte dynamics. Neurosci Lett 582:21–26CrossRef Nazari S, Faez K, Karami E, Amiri M (2014) A digital neuromorphic circuit for a simplified model of astrocyte dynamics. Neurosci Lett 582:21–26CrossRef
19.
Zurück zum Zitat Nazari S, Faez K, Amiri M, Karami E (2015) A novel digital implementation of neuron–astrocyte interactions. J Comput Electron 14(1):227–239CrossRef Nazari S, Faez K, Amiri M, Karami E (2015) A novel digital implementation of neuron–astrocyte interactions. J Comput Electron 14(1):227–239CrossRef
20.
Zurück zum Zitat Nazari S, Faez K, Amiri M, Karami E (2015) A digital implementation of neuron–astrocyte interaction for neuromorphic applications. Neural Netw 66:79–90CrossRef Nazari S, Faez K, Amiri M, Karami E (2015) A digital implementation of neuron–astrocyte interaction for neuromorphic applications. Neural Netw 66:79–90CrossRef
21.
Zurück zum Zitat Nazari S, Amiri M, Faez K, Amiri M (2015) Multiplier-less digital implementation of neuron–astrocyte signalling on FPGA. Neurocomputing 164:281–292CrossRef Nazari S, Amiri M, Faez K, Amiri M (2015) Multiplier-less digital implementation of neuron–astrocyte signalling on FPGA. Neurocomputing 164:281–292CrossRef
22.
Zurück zum Zitat Nazari S, Amiri M, Faez K, Karami E (2014) A novel digital circuit for astrocyte-inspired stimulator to desynchronize two coupled oscillators. In: 2014 21th Iranian Conference on Biomedical Engineering (ICBME), IEEE, pp 80–85 Nazari S, Amiri M, Faez K, Karami E (2014) A novel digital circuit for astrocyte-inspired stimulator to desynchronize two coupled oscillators. In: 2014 21th Iranian Conference on Biomedical Engineering (ICBME), IEEE, pp 80–85
23.
Zurück zum Zitat Mazzoni A, Panzeri S, Logothetis NK, Brunel N (2008) Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput Biol 4(12):e1000239MathSciNetCrossRef Mazzoni A, Panzeri S, Logothetis NK, Brunel N (2008) Encoding of naturalistic stimuli by local field potential spectra in networks of excitatory and inhibitory neurons. PLoS Comput Biol 4(12):e1000239MathSciNetCrossRef
24.
Zurück zum Zitat Bertram EH (2013) Neuronal circuits in epilepsy: Do they matter? Exp Neurol 244:67–74CrossRef Bertram EH (2013) Neuronal circuits in epilepsy: Do they matter? Exp Neurol 244:67–74CrossRef
25.
Zurück zum Zitat Stefanescu RA, Shivakeshavan RG, Talathi SS (2012) Computational models of epilepsy. Seizure 21(10):748–759CrossRef Stefanescu RA, Shivakeshavan RG, Talathi SS (2012) Computational models of epilepsy. Seizure 21(10):748–759CrossRef
26.
Zurück zum Zitat Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K et al (2013) Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 16(1):64–70CrossRef Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K et al (2013) Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 16(1):64–70CrossRef
27.
Zurück zum Zitat Frohlich F, Timofeev I, Sejnowski TJ, Bazhenov M (2008) Extracellular potassium dynamics and epileptogenesis. In: Soltesz I, Staley K (eds) Computational Neuroscience in Epilepsy, pp 407–427 Frohlich F, Timofeev I, Sejnowski TJ, Bazhenov M (2008) Extracellular potassium dynamics and epileptogenesis. In: Soltesz I, Staley K (eds) Computational Neuroscience in Epilepsy, pp 407–427
28.
Zurück zum Zitat Kudela P, Franaszczuk PJ, Bergey GK (2003) Changing excitation and inhibition in simulated neural networks: effects on induced bursting behavior. Biol Cybern 88(4):276–285CrossRefMATH Kudela P, Franaszczuk PJ, Bergey GK (2003) Changing excitation and inhibition in simulated neural networks: effects on induced bursting behavior. Biol Cybern 88(4):276–285CrossRefMATH
29.
Zurück zum Zitat Winestone JS, Zaidel A, Bergman H, Israel Z (2012) The use of macroelectrodes in recording cellular spiking activity. J Neurosci Methods 206:34–39CrossRef Winestone JS, Zaidel A, Bergman H, Israel Z (2012) The use of macroelectrodes in recording cellular spiking activity. J Neurosci Methods 206:34–39CrossRef
30.
Zurück zum Zitat Weinberger M, Hutchison WD, Dostrovsky JO (2009) Pathological subthalamic nucleus oscillations in PD: Can they be the cause of bradykinesia and akinesia? Exp Neurol 219:58–61CrossRef Weinberger M, Hutchison WD, Dostrovsky JO (2009) Pathological subthalamic nucleus oscillations in PD: Can they be the cause of bradykinesia and akinesia? Exp Neurol 219:58–61CrossRef
31.
Zurück zum Zitat Sancristóbal B, Vicente R, Garcia-Ojalvo J (2014) Role of frequency mismatch in neuronal communication through coherence. J Comput Neurosci 37(2):193–208CrossRef Sancristóbal B, Vicente R, Garcia-Ojalvo J (2014) Role of frequency mismatch in neuronal communication through coherence. J Comput Neurosci 37(2):193–208CrossRef
32.
Zurück zum Zitat Barardi A, Malagarriga D, Sancristobal B, Garcia-Ojalvo J, Pons AJ (2014) Probing scale interaction in brain dynamics through synchronization. Philos Trans R Soc B Biol Sci 369(1653):20130533CrossRef Barardi A, Malagarriga D, Sancristobal B, Garcia-Ojalvo J, Pons AJ (2014) Probing scale interaction in brain dynamics through synchronization. Philos Trans R Soc B Biol Sci 369(1653):20130533CrossRef
33.
Zurück zum Zitat Cavallari S, Panzeri S, Mazzoni A (2014) Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks. Frontiers Neural Circuits 8:12CrossRef Cavallari S, Panzeri S, Mazzoni A (2014) Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks. Frontiers Neural Circuits 8:12CrossRef
34.
Zurück zum Zitat Linne ML, Jalonen TO (2014) Astrocyte-neuron interactions: from experimental research-based models to translational medicine. Prog Mol Biol Transl Sci 123:191CrossRef Linne ML, Jalonen TO (2014) Astrocyte-neuron interactions: from experimental research-based models to translational medicine. Prog Mol Biol Transl Sci 123:191CrossRef
35.
Zurück zum Zitat Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14(5):311–321CrossRef Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14(5):311–321CrossRef
36.
Zurück zum Zitat Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705CrossRef Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R et al (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74(4):691–705CrossRef
37.
Zurück zum Zitat Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc B Biol Sci 369(1654):20130595CrossRef Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc B Biol Sci 369(1654):20130595CrossRef
38.
Zurück zum Zitat Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463:232–236CrossRef Henneberger C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463:232–236CrossRef
39.
Zurück zum Zitat Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, Haydon PG, Frank MG (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–219CrossRef Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, Haydon PG, Frank MG (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–219CrossRef
40.
Zurück zum Zitat Seifert G, Steinhäuser C (2013) Neuron–astrocyte signaling and epilepsy. Exp Neurol 244:4–10CrossRef Seifert G, Steinhäuser C (2013) Neuron–astrocyte signaling and epilepsy. Exp Neurol 244:4–10CrossRef
41.
Zurück zum Zitat Amiri M, Bahrami F, Janahmadi M (2012) Modified thalamocortical model: a step towards more understanding of the functional contribution of astrocytes to epilepsy. J Comput Neurosci 33(2):285–299MathSciNetCrossRef Amiri M, Bahrami F, Janahmadi M (2012) Modified thalamocortical model: a step towards more understanding of the functional contribution of astrocytes to epilepsy. J Comput Neurosci 33(2):285–299MathSciNetCrossRef
42.
Zurück zum Zitat Amiri M, Bahrami F, Janahmadi M (2012) On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci Res 72(2):172–180CrossRefMATH Amiri M, Bahrami F, Janahmadi M (2012) On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci Res 72(2):172–180CrossRefMATH
43.
Zurück zum Zitat Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV (2009) Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J Biol Phys 35(4):425–445. doi:10.1007/s10867-009-9156-x CrossRef Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV (2009) Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J Biol Phys 35(4):425–445. doi:10.​1007/​s10867-009-9156-x CrossRef
44.
Zurück zum Zitat Montaseri G, Yazdanpanah MJ (2014) Desynchronization of two coupled limit-cycle oscillators using an astrocyte-inspired controller. Int J Biomath 7(01):1450001, 1–23MathSciNetCrossRefMATH Montaseri G, Yazdanpanah MJ (2014) Desynchronization of two coupled limit-cycle oscillators using an astrocyte-inspired controller. Int J Biomath 7(01):1450001, 1–23MathSciNetCrossRefMATH
45.
Zurück zum Zitat Touboul J, Brette R (2008) Dynamics and bifurcations of the adaptive exponential integrate-and-fire model. Biol Cybern 99(4–5):319–334MathSciNetCrossRefMATH Touboul J, Brette R (2008) Dynamics and bifurcations of the adaptive exponential integrate-and-fire model. Biol Cybern 99(4–5):319–334MathSciNetCrossRefMATH
46.
Zurück zum Zitat Khalil HK, Grizzle JW (2002) Nonlinear systems, vol 3. Prentice hall, Upper Saddle River Khalil HK, Grizzle JW (2002) Nonlinear systems, vol 3. Prentice hall, Upper Saddle River
47.
Zurück zum Zitat Majumder T, Pande PP, Kalyanaraman A (2014) Hardware accelerators in computational biology: application, potential and challenges. Design & Test, IEEE 31(1):8–18 Majumder T, Pande PP, Kalyanaraman A (2014) Hardware accelerators in computational biology: application, potential and challenges. Design & Test, IEEE 31(1):8–18
48.
Zurück zum Zitat Piri M, Amiri M, Amiri M (2015) A bio-inspired stimulator to desynchronize epileptic cortical population models: a digital implementation framework. Neural Netw 67:74–83CrossRef Piri M, Amiri M, Amiri M (2015) A bio-inspired stimulator to desynchronize epileptic cortical population models: a digital implementation framework. Neural Netw 67:74–83CrossRef
49.
Zurück zum Zitat Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36(3):174–184CrossRef Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36(3):174–184CrossRef
50.
Zurück zum Zitat Montaseri G, Yazdanpanah MJ, Bahrami F (2015) Designing a deep brain stimulator to suppress pathological neuronal synchrony. Neural Netw 63:282–292CrossRefMATH Montaseri G, Yazdanpanah MJ, Bahrami F (2015) Designing a deep brain stimulator to suppress pathological neuronal synchrony. Neural Netw 63:282–292CrossRefMATH
51.
Zurück zum Zitat Beuter A, Lefaucheur JP, Modolo J (2014) Closed-loop cortical neuromodulation in Parkinson’s disease: An alternative to deep brain stimulation? Clin Neurophysiol 125(5):874–885CrossRef Beuter A, Lefaucheur JP, Modolo J (2014) Closed-loop cortical neuromodulation in Parkinson’s disease: An alternative to deep brain stimulation? Clin Neurophysiol 125(5):874–885CrossRef
Metadaten
Titel
A multiplier-less digital design of a bio-inspired stimulator to suppress synchronized regime in a large-scale, sparsely connected neural network
verfasst von
Soheila Nazari
Karim Faez
Mahmood Amiri
Publikationsdatum
28.10.2015
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 2/2017
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-015-2071-0

Weitere Artikel der Ausgabe 2/2017

Neural Computing and Applications 2/2017 Zur Ausgabe