Skip to main content

2018 | OriginalPaper | Buchkapitel

A Multiscale Model of Cell Migration in Three-Dimensional Extracellular Matrix

verfasst von : Xiuxiu He, Yi Jiang

Erschienen in: Cell Movement

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cell migration in a three-dimensional (3D) extracellular matrix (ECM) is one of the key biological processes. Yet many fundamental questions remain unanswered. In this chapter, we introduce a modeling framework for a 3D, element-based, multiscale cell migration model. This model takes into account the mechanosensing signaling pathway, cell morphological dynamics, and cell-ECM interactions. To integrate the mechanochemical dynamics, we developed an implicit integration method to calculate forces for the elements and a moving boundary reaction-diffusion solver. The model is partially tested for cell migration on a curved substrate. Further development is needed to couple the cell model with a mechanical ECM model. This model can be used to test hypotheses of cell-ECM interactions and cell migration in tissue environment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Friedl, P., Alexander, S. (2011). Cancer invasion and the microenvironment: plasticity and reciprocity. Cell, 147(5), 992–1009.CrossRef Friedl, P., Alexander, S. (2011). Cancer invasion and the microenvironment: plasticity and reciprocity. Cell, 147(5), 992–1009.CrossRef
2.
Zurück zum Zitat Califano, J.P. and Reinhart-King, C.A. (2008). A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cellular and Molecular Bioengineering, 1(2–3), p. 122.CrossRef Califano, J.P. and Reinhart-King, C.A. (2008). A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cellular and Molecular Bioengineering, 1(2–3), p. 122.CrossRef
3.
Zurück zum Zitat Driscoll, M.K., Sun, X., Guven, C., Fourkas, J.T. and Losert, W. (2014). Cellular contact guidance through dynamic sensing of nanotopography. ACS nano, 8(4), pp. 3546–3555.CrossRef Driscoll, M.K., Sun, X., Guven, C., Fourkas, J.T. and Losert, W. (2014). Cellular contact guidance through dynamic sensing of nanotopography. ACS nano, 8(4), pp. 3546–3555.CrossRef
4.
Zurück zum Zitat Kim, D.H., Provenzano, P.P., Smith, C.L. and Levchenko, A. (2012). Matrix nanotopography as a regulator of cell function. J Cell Biol, 197(3), pp. 351–360.CrossRef Kim, D.H., Provenzano, P.P., Smith, C.L. and Levchenko, A. (2012). Matrix nanotopography as a regulator of cell function. J Cell Biol, 197(3), pp. 351–360.CrossRef
5.
Zurück zum Zitat Stroka, K.M., Jiang, H., Chen, S.H., Tong, Z., Wirtz, D., Sun, S.X. and Konstantopoulos, K. (2014). Water permeation drives tumor cell migration in confined microenvironments. Cell, 157(3), pp. 611–623.CrossRef Stroka, K.M., Jiang, H., Chen, S.H., Tong, Z., Wirtz, D., Sun, S.X. and Konstantopoulos, K. (2014). Water permeation drives tumor cell migration in confined microenvironments. Cell, 157(3), pp. 611–623.CrossRef
6.
Zurück zum Zitat Friedl, P. and Wolf, K. (2009). Plasticity of cell migration: a multiscale tuning model. The Journal of cell biology, pp. jcb-200909003. Friedl, P. and Wolf, K. (2009). Plasticity of cell migration: a multiscale tuning model. The Journal of cell biology, pp. jcb-200909003.
7.
Zurück zum Zitat Xu F, Zhang M, He W, Han R, Xue F, Liu Z, Zhang F, Lippincott-Schwartz J, Xu P. (2017). Live cell single molecule-guided Bayesian localization super resolution microscopy. Cell research, 27(5), 713.CrossRef Xu F, Zhang M, He W, Han R, Xue F, Liu Z, Zhang F, Lippincott-Schwartz J, Xu P. (2017). Live cell single molecule-guided Bayesian localization super resolution microscopy. Cell research, 27(5), 713.CrossRef
8.
Zurück zum Zitat Chen, B.C., Legant, W.R., Wang, K., Shao, L., Milkie, D.E., Davidson, M.W., Janetopoulos, C., Wu, X.S., Hammer, J.A., Liu, Z. and English, B.P. (2014). Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 346(6208), p.1257998.CrossRef Chen, B.C., Legant, W.R., Wang, K., Shao, L., Milkie, D.E., Davidson, M.W., Janetopoulos, C., Wu, X.S., Hammer, J.A., Liu, Z. and English, B.P. (2014). Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science, 346(6208), p.1257998.CrossRef
9.
Zurück zum Zitat Lee, B., Konen, J., Wilkinson, S., Marcus, A.I. and Jiang, Y. (2017). Local alignment vectors reveal cancer cell-induced ECM fiber remodeling dynamics. Scientific reports, 7, p.39498.CrossRef Lee, B., Konen, J., Wilkinson, S., Marcus, A.I. and Jiang, Y. (2017). Local alignment vectors reveal cancer cell-induced ECM fiber remodeling dynamics. Scientific reports, 7, p.39498.CrossRef
10.
Zurück zum Zitat Oakes, P.W., Wagner, E., Brand, C.A., Probst, D., Linke, M., Schwarz, U.S., Glotzer, M. and Gardel, M.L. (2017). Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres. Nature Communications, 8, p.15817.CrossRef Oakes, P.W., Wagner, E., Brand, C.A., Probst, D., Linke, M., Schwarz, U.S., Glotzer, M. and Gardel, M.L. (2017). Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres. Nature Communications, 8, p.15817.CrossRef
11.
Zurück zum Zitat Franck, C., Maskarinec, S.A., Tirrell, D.A. and Ravichandran, G. (2011). Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions. PloS one, 6(3), p.e17833.CrossRef Franck, C., Maskarinec, S.A., Tirrell, D.A. and Ravichandran, G. (2011). Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions. PloS one, 6(3), p.e17833.CrossRef
12.
Zurück zum Zitat Newman, TJ. (2005). Modeling multicellular systems using subcellular elements, J. Math Biosci Eng, 2 (3) , pp. 611–622MathSciNetCrossRef Newman, TJ. (2005). Modeling multicellular systems using subcellular elements, J. Math Biosci Eng, 2 (3) , pp. 611–622MathSciNetCrossRef
13.
Zurück zum Zitat Gallant, N.D., Michael, K.E. and Garcia, A.J. (2005). Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Molecular biology of the cell, 16(9), pp. 4329–4340.CrossRef Gallant, N.D., Michael, K.E. and Garcia, A.J. (2005). Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Molecular biology of the cell, 16(9), pp. 4329–4340.CrossRef
14.
Zurück zum Zitat Barnhart, E.L., Lee, K.C., Keren, K., Mogilner, A. and Theriot, J.A. (2011). An adhesion-dependent switch between mechanisms that determine motile cell shape. PLoS biology, 9(5), p.e1001059.CrossRef Barnhart, E.L., Lee, K.C., Keren, K., Mogilner, A. and Theriot, J.A. (2011). An adhesion-dependent switch between mechanisms that determine motile cell shape. PLoS biology, 9(5), p.e1001059.CrossRef
15.
Zurück zum Zitat Shao, D., Levine, H. and Rappel, W.J. (2012). Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proceedings of the National Academy of Sciences, 109(18), pp. 6851–6856.CrossRef Shao, D., Levine, H. and Rappel, W.J. (2012). Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proceedings of the National Academy of Sciences, 109(18), pp. 6851–6856.CrossRef
16.
Zurück zum Zitat Rubinstein, B., Fournier, M.F., Jacobson, K., Verkhovsky, A.B. and Mogilner, A. (2009). Actin-myosin viscoelastic flow in the keratocyte lamellipod. Biophysical journal, 97(7), pp. 1853–1863.CrossRef Rubinstein, B., Fournier, M.F., Jacobson, K., Verkhovsky, A.B. and Mogilner, A. (2009). Actin-myosin viscoelastic flow in the keratocyte lamellipod. Biophysical journal, 97(7), pp. 1853–1863.CrossRef
17.
Zurück zum Zitat Checa, S., Rausch, M.K., Petersen, A., Kuhl, E. and Duda, G.N. (2015). The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization. Biomechanics and modeling in mechanobiology, 14(1), pp. 1–13.CrossRef Checa, S., Rausch, M.K., Petersen, A., Kuhl, E. and Duda, G.N. (2015). The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization. Biomechanics and modeling in mechanobiology, 14(1), pp. 1–13.CrossRef
18.
Zurück zum Zitat Shreiber, D.I., Barocas, V.H. and Tranquillo, R.T. (2003). Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophysical journal, 84(6), pp. 4102–4114.CrossRef Shreiber, D.I., Barocas, V.H. and Tranquillo, R.T. (2003). Temporal variations in cell migration and traction during fibroblast-mediated gel compaction. Biophysical journal, 84(6), pp. 4102–4114.CrossRef
19.
Zurück zum Zitat Bauer, A.L., Jackson, T.L. and Jiang, Y. (2009). Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS computational biology, 5(7), p.e1000445.MathSciNetCrossRef Bauer, A.L., Jackson, T.L. and Jiang, Y. (2009). Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS computational biology, 5(7), p.e1000445.MathSciNetCrossRef
20.
Zurück zum Zitat Zaman, M.H., Trapani, L.M., Sieminski, A.L., MacKellar, D., Gong, H., Kamm, R.D., Wells, A., Lauffenburger, D.A. and Matsudaira, P. (2006). Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proceedings of the National Academy of Sciences, 103(29), pp. 10889–10894.CrossRef Zaman, M.H., Trapani, L.M., Sieminski, A.L., MacKellar, D., Gong, H., Kamm, R.D., Wells, A., Lauffenburger, D.A. and Matsudaira, P. (2006). Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proceedings of the National Academy of Sciences, 103(29), pp. 10889–10894.CrossRef
21.
Zurück zum Zitat Tozluo?lu, M., Tournier, A.L., Jenkins, R.P., Hooper, S., Bates, P.A. and Sahai, E. (2013). Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nature cell biology, 15(7), p.751. Tozluo?lu, M., Tournier, A.L., Jenkins, R.P., Hooper, S., Bates, P.A. and Sahai, E. (2013). Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nature cell biology, 15(7), p.751.
22.
Zurück zum Zitat Nelson, C.M. and Bissell, M.J. (2006). Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol., 22, pp. 287–309.CrossRef Nelson, C.M. and Bissell, M.J. (2006). Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol., 22, pp. 287–309.CrossRef
23.
Zurück zum Zitat Yamada, K.M. and Cukierman, E. (2007). Modeling tissue morphogenesis and cancer in 3D. Cell, 130(4), pp. 601–610.CrossRef Yamada, K.M. and Cukierman, E. (2007). Modeling tissue morphogenesis and cancer in 3D. Cell, 130(4), pp. 601–610.CrossRef
24.
Zurück zum Zitat Grinnell, F. and Petroll, W.M. (2010). Cell motility and mechanics in three-dimensional collagen matrices. Annual review of cell and developmental biology, 26, pp. 335–361.CrossRef Grinnell, F. and Petroll, W.M. (2010). Cell motility and mechanics in three-dimensional collagen matrices. Annual review of cell and developmental biology, 26, pp. 335–361.CrossRef
25.
Zurück zum Zitat DuFort, C.C., Paszek, M.J. and Weaver, V.M. 2011. Balancing forces: architectural control of mechanotransduction. Nature reviews Molecular cell biology, 12(5), p.308.CrossRef DuFort, C.C., Paszek, M.J. and Weaver, V.M. 2011. Balancing forces: architectural control of mechanotransduction. Nature reviews Molecular cell biology, 12(5), p.308.CrossRef
26.
Zurück zum Zitat Baker, B.M. and Chen, C.S. (2012). Deconstructing the third dimension?how 3D culture microenvironments alter cellular cues. J Cell Sci, 125(13), pp. 3015–3024.CrossRef Baker, B.M. and Chen, C.S. (2012). Deconstructing the third dimension?how 3D culture microenvironments alter cellular cues. J Cell Sci, 125(13), pp. 3015–3024.CrossRef
27.
Zurück zum Zitat Petrie, R.J., Gavara, N., Chadwick, R.S. and Yamada, K.M., 2012. Nonpolarized signaling reveals two distinct modes of 3D cell migration. J Cell Biol, 197(3), pp. 439–455.CrossRef Petrie, R.J., Gavara, N., Chadwick, R.S. and Yamada, K.M., 2012. Nonpolarized signaling reveals two distinct modes of 3D cell migration. J Cell Biol, 197(3), pp. 439–455.CrossRef
28.
Zurück zum Zitat Buehler, M.J. (2006). Atomistic and continuum modeling of mechanical properties of collagen: elasticity, fracture, and self-assembly. Journal of Materials Research, 21(8), pp. 1947–1961.CrossRef Buehler, M.J. (2006). Atomistic and continuum modeling of mechanical properties of collagen: elasticity, fracture, and self-assembly. Journal of Materials Research, 21(8), pp. 1947–1961.CrossRef
29.
Zurück zum Zitat Buehler, M.J. (2006). Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proceedings of the National Academy of Sciences, 103(33), pp. 12285–12290.CrossRef Buehler, M.J. (2006). Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proceedings of the National Academy of Sciences, 103(33), pp. 12285–12290.CrossRef
30.
Zurück zum Zitat Gautieri, A., Vesentini, S., Redaelli, A. and Buehler, M.J. (2011). Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano letters, 11(2), pp. 757–766.CrossRef Gautieri, A., Vesentini, S., Redaelli, A. and Buehler, M.J. (2011). Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano letters, 11(2), pp. 757–766.CrossRef
31.
Zurück zum Zitat Broedersz, C.P., Storm, C. and MacKintosh, F.C. (2008). Nonlinear elasticity of composite networks of stiff biopolymers with flexible linkers. Physical review letters, 101(11), p.118103. Broedersz, C.P., Storm, C. and MacKintosh, F.C. (2008). Nonlinear elasticity of composite networks of stiff biopolymers with flexible linkers. Physical review letters, 101(11), p.118103.
32.
Zurück zum Zitat Rubinstein, M. and Panyukov, S. (1997). Nonaffine deformation and elasticity of polymer networks. Macromolecules, 30(25), pp. 8036–8044.CrossRef Rubinstein, M. and Panyukov, S. (1997). Nonaffine deformation and elasticity of polymer networks. Macromolecules, 30(25), pp. 8036–8044.CrossRef
33.
Zurück zum Zitat Stein, A.M., Vader, D.A., Weitz, D.A. and Sander, L.M. (2011). The micromechanics of three?dimensional collagen?I gels. Complexity, 16(4), pp. 22–28.CrossRef Stein, A.M., Vader, D.A., Weitz, D.A. and Sander, L.M. (2011). The micromechanics of three?dimensional collagen?I gels. Complexity, 16(4), pp. 22–28.CrossRef
34.
Zurück zum Zitat Head, D.A., Levine, A.J. and MacKintosh, F.C. (2003). Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Physical Review E, 68(6), p.061907. Head, D.A., Levine, A.J. and MacKintosh, F.C. (2003). Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Physical Review E, 68(6), p.061907.
35.
Zurück zum Zitat Lee, B., Zhou, X., Riching, K., Eliceiri, K.W., Keely, P.J., Guelcher, S.A., Weaver, A.M. and Jiang, Y. (2014). A three-dimensional computational model of collagen network mechanics. PloS one, 9(11), p.e111896.CrossRef Lee, B., Zhou, X., Riching, K., Eliceiri, K.W., Keely, P.J., Guelcher, S.A., Weaver, A.M. and Jiang, Y. (2014). A three-dimensional computational model of collagen network mechanics. PloS one, 9(11), p.e111896.CrossRef
36.
Zurück zum Zitat Mogilner, A., Elston, T.C., Wang, H. and Oster, G. (2002). Molecular motors: theory. In Computational cell biology (pp. 320–353). Springer, New York, NY. Mogilner, A., Elston, T.C., Wang, H. and Oster, G. (2002). Molecular motors: theory. In Computational cell biology (pp. 320–353). Springer, New York, NY.
37.
Zurück zum Zitat Lepzelter, D. and M.H. Zaman. (2014). Modeling persistence in mesenchymal cell motility using explicit fibers. Langmuir, 30(19): p. 5506–9.CrossRef Lepzelter, D. and M.H. Zaman. (2014). Modeling persistence in mesenchymal cell motility using explicit fibers. Langmuir, 30(19): p. 5506–9.CrossRef
38.
Zurück zum Zitat He, X. and Jiang, Y. (2017). Substrate curvature regulates cell migration. Physical biology, 14(3), p.035006.MathSciNetCrossRef He, X. and Jiang, Y. (2017). Substrate curvature regulates cell migration. Physical biology, 14(3), p.035006.MathSciNetCrossRef
39.
Zurück zum Zitat He, X., Lee, B., Jiang, Y. (2016). Cell-ECM interactions in tumor invasion. In Systems Biology of Tumor Microenvironment (pp. 73–91). Springer, Cham.CrossRef He, X., Lee, B., Jiang, Y. (2016). Cell-ECM interactions in tumor invasion. In Systems Biology of Tumor Microenvironment (pp. 73–91). Springer, Cham.CrossRef
40.
Zurück zum Zitat Silin, D. and T. Patzek. (2006). Pore space morphology analysis using maximal inscribed spheres. Physica A: Statistical Mechanics and its Applications, 371(2): p. 336–360CrossRef Silin, D. and T. Patzek. (2006). Pore space morphology analysis using maximal inscribed spheres. Physica A: Statistical Mechanics and its Applications, 371(2): p. 336–360CrossRef
41.
Zurück zum Zitat Angermann, B.R., et al. (2012). Computational modeling of cellular signaling processes embedded into dynamic spatial contexts. Nature methods, 9(3): p. 283–9CrossRef Angermann, B.R., et al. (2012). Computational modeling of cellular signaling processes embedded into dynamic spatial contexts. Nature methods, 9(3): p. 283–9CrossRef
42.
Zurück zum Zitat Loew, L.M. and J.C. Schaff. (2001). The Virtual Cell: a software environment for computational cell biology. Trends in biotechnology, 19(10): p. 401–6CrossRef Loew, L.M. and J.C. Schaff. (2001). The Virtual Cell: a software environment for computational cell biology. Trends in biotechnology, 19(10): p. 401–6CrossRef
44.
Zurück zum Zitat Madzvamuse, A., Maini, P.K. and Wathen, A.J. (2005). A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains. Journal of Scientific Computing, 24(2), pp. 247–262.MathSciNetCrossRef Madzvamuse, A., Maini, P.K. and Wathen, A.J. (2005). A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains. Journal of Scientific Computing, 24(2), pp. 247–262.MathSciNetCrossRef
45.
Zurück zum Zitat Xing, J., Wang, H. and Oster, G. (2005). From continuum Fokker-Planck models to discrete kinetic models. Biophysical journal, 89(3), pp. 1551–1563.CrossRef Xing, J., Wang, H. and Oster, G. (2005). From continuum Fokker-Planck models to discrete kinetic models. Biophysical journal, 89(3), pp. 1551–1563.CrossRef
46.
Zurück zum Zitat Baines, M. J. (1994). Moving Finite Elements, Monographs on Numerical Analysis, Clarendon, Press, Oxford.MATH Baines, M. J. (1994). Moving Finite Elements, Monographs on Numerical Analysis, Clarendon, Press, Oxford.MATH
47.
Zurück zum Zitat Miller, K. and Miller, R.N. (1981). Moving finite elements. I. SIAM Journal on Numerical Analysis, 18(6), pp. 1019–1032.MathSciNetCrossRef Miller, K. and Miller, R.N. (1981). Moving finite elements. I. SIAM Journal on Numerical Analysis, 18(6), pp. 1019–1032.MathSciNetCrossRef
48.
Zurück zum Zitat Chen, B., Legand, W.R., Wang, K., et al., (2014). Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 346, 6200. Chen, B., Legand, W.R., Wang, K., et al., (2014). Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 346, 6200.
49.
Zurück zum Zitat Popov, K., Komianos, J. and Papoian, G.A. (2016). MEDYAN: mechanochemical simulations of contraction and polarity alignment in actomyosin networks. PLoS computational biology, 12(4), p.e1004877.CrossRef Popov, K., Komianos, J. and Papoian, G.A. (2016). MEDYAN: mechanochemical simulations of contraction and polarity alignment in actomyosin networks. PLoS computational biology, 12(4), p.e1004877.CrossRef
50.
Zurück zum Zitat Sung, B.H., Ketova, T., Hoshino, D., Zijlstra, A. and Weaver, A.M. (2015). Directional cell movement through tissues is controlled by exosome secretion. Nature communications, 6, p.7164.CrossRef Sung, B.H., Ketova, T., Hoshino, D., Zijlstra, A. and Weaver, A.M. (2015). Directional cell movement through tissues is controlled by exosome secretion. Nature communications, 6, p.7164.CrossRef
Metadaten
Titel
A Multiscale Model of Cell Migration in Three-Dimensional Extracellular Matrix
verfasst von
Xiuxiu He
Yi Jiang
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-96842-1_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.