Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

16.11.2017

A mutual refinement technique for big data retrieval using hash tag graph

Zeitschrift:
Cluster Computing
Autoren:
T. Prasanth, M. Gunasekaran

Abstract

Big data is centered upon the technique of expanding volume of high velocity, intricate along with different kind of data. Organizations that hold vast sum of data deals with new creation of systematic tools intended for large data. The conventional data-intensive business application starts to go down behind the times, on account of the deficient abilities to manage large data volumes, unstructured information, low rate of information retrieval along with complex algorithms. Big data relies upon the data complexity, relatively than the data size only. For resolving this kind of trouble, this paper establishes a mutual refinement technique for big data retrieval to augment the performance. The intended system comprises the system of training and retrieval which is performed consecutively. In training process, initially input data is preprocessed by splitting the data. Then frequency and entropy features are extracted from the preprocessed data. After the feature extraction data is exhibited to the mutual refinement process. In mutual refinement step hash tag graph is generated to train the data and this removes the uncertainty from the data. In retrieval process, the input query data is used for the similarity assessment. Features like frequency and entropy are extracted from the query data. Then the feature value is compared with the hash tag graph. If the feature value is matched then the data is retrieved as of the hash tag graph and the retrieved data is visualized. The proposed technique’s performance is assessed by relating our intended work with the other conventional works. The experimental output exhibits that our intended mutual refinement process augments the system performance process by confiscating the uncertainty comprised in the system. This work offered a unique mutual refinement approach which yields better outcomes for retrieving the big data in a proficient manner. The proposed process retrieving process in big data gives the better performance but in future, experiments can be done on large datasets and some real-time applications to calculate the effectiveness of the proposed method.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​​​​​​​​

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise