Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 24/2019

15.11.2019

A N/S-codoped disordered carbon with enlarged interlayer distance derived from cirsium setosum as high-performance anode for sodium ion batteries

verfasst von: Liyun Cao, Yong Wang, Hailing Hu, Jianfeng Huang, Lingjiang Kou, Zhanwei Xu, Jiayin Li

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 24/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biomass is considered an appropriate source for carbon anodes. In this paper, N/S-codoped carbon (NSC) was synthesized through hydrothermal pretreatment and subsequent melamine/sulfur activation with the cirsium setosum precursor. After being tested as anode material of sodium ion battery, the N/S-codoped carbon shows a reversible capacity of 268 mA h g−1 at the current density of 100 mA g−1 after 100 cycles. Moreover, it exhibits a long life and high rate performance (198.6 mAh g−1 at 1000 mA g−1 after 320 cycles and 133.9 mA h g−1 at 5000 m A g−1 after 1000 cycles). The superior electrochemical performance of NSC can be ascribed to its larger interplanar spacing (0.394 nm) and the increase in disordered degree due to the nitrogen/sulfur-codoped.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010) J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)
2.
Zurück zum Zitat B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sour. 195, 2419–2430 (2010) B. Scrosati, J. Garche, Lithium batteries: status, prospects and future. J. Power Sour. 195, 2419–2430 (2010)
3.
Zurück zum Zitat J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 1–16 (2016) J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 1–16 (2016)
4.
Zurück zum Zitat C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2016) C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2016)
5.
Zurück zum Zitat K. Chen, D. Xue, Anode performances of mixed LiMn2O4 and carbon black toward lithium-ion battery. Funct. Mater. Lett. 7, 1450017 (2014) K. Chen, D. Xue, Anode performances of mixed LiMn2O4 and carbon black toward lithium-ion battery. Funct. Mater. Lett. 7, 1450017 (2014)
6.
Zurück zum Zitat S.H. Mohr, G. Mudd, D. Giurco, Lithium resources and production: critical assessment and global projections. Minerals 2, 107–121 (2012) S.H. Mohr, G. Mudd, D. Giurco, Lithium resources and production: critical assessment and global projections. Minerals 2, 107–121 (2012)
7.
Zurück zum Zitat J.M. Tarascon, Is lithium the new gold? Nat. Chem. 2, 510 (2010) J.M. Tarascon, Is lithium the new gold? Nat. Chem. 2, 510 (2010)
8.
Zurück zum Zitat J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017) J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017)
9.
Zurück zum Zitat H. Pan, Y.S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338–2360 (2013) H. Pan, Y.S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6, 2338–2360 (2013)
10.
Zurück zum Zitat V. Palomares, P. Serras, I. Villaluenga et al., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884–5901 (2012) V. Palomares, P. Serras, I. Villaluenga et al., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884–5901 (2012)
11.
Zurück zum Zitat W. Luo, J. Schardt, C. Bommier et al., Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J. Mater. Chem. A 1, 10662–10666 (2013) W. Luo, J. Schardt, C. Bommier et al., Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J. Mater. Chem. A 1, 10662–10666 (2013)
12.
Zurück zum Zitat L. Yin, Y. Wang, C. Han et al., Self-assembly of disordered hard carbon/graphene hybrid for sodium-ion batteries. J. Power Sour. 305, 156–160 (2016) L. Yin, Y. Wang, C. Han et al., Self-assembly of disordered hard carbon/graphene hybrid for sodium-ion batteries. J. Power Sour. 305, 156–160 (2016)
13.
Zurück zum Zitat X. Han, Y. Liu, Z. Jia et al., Atomic-layer-deposition oxide nano-glue for sodium ion batteries. Nano Lett. 14, 139–147 (2014) X. Han, Y. Liu, Z. Jia et al., Atomic-layer-deposition oxide nano-glue for sodium ion batteries. Nano Lett. 14, 139–147 (2014)
14.
Zurück zum Zitat H. Xie, W.P. Kalisvaart, B.C. Olsen et al., Sn–Bi–Sb alloys as anode materials for sodium ion batteries. J. Mater. Chem. A 5, 9661–9670 (2017) H. Xie, W.P. Kalisvaart, B.C. Olsen et al., Sn–Bi–Sb alloys as anode materials for sodium ion batteries. J. Mater. Chem. A 5, 9661–9670 (2017)
15.
Zurück zum Zitat M. Mortazavi, C. Wang, J. Deng et al., Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J. Power Sources 268, 279–286 (2014) M. Mortazavi, C. Wang, J. Deng et al., Ab initio characterization of layered MoS2 as anode for sodium-ion batteries. J. Power Sources 268, 279–286 (2014)
16.
Zurück zum Zitat S. Yuan, X.L. Huang, D.L. Ma et al., Electrodes: engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 26, 2284 (2014) S. Yuan, X.L. Huang, D.L. Ma et al., Electrodes: engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 26, 2284 (2014)
17.
Zurück zum Zitat X. Xie, T. Makaryan, M. Zhao et al., MoS2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 6, 1502161 (2016) X. Xie, T. Makaryan, M. Zhao et al., MoS2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater. 6, 1502161 (2016)
18.
Zurück zum Zitat Q. Zhou, L. Liu, Z. Huang et al., CoS@polyaniline nanotubes as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 4, 5505–5516 (2016) Q. Zhou, L. Liu, Z. Huang et al., CoS@polyaniline nanotubes as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 4, 5505–5516 (2016)
19.
Zurück zum Zitat X. Wang, L. Fan, D. Gong, J. Zhu et al., Core-shell Ge @ graphene @ TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv. Funct. Mater. 26, 1104–1111 (2016) X. Wang, L. Fan, D. Gong, J. Zhu et al., Core-shell Ge @ graphene @ TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv. Funct. Mater. 26, 1104–1111 (2016)
20.
Zurück zum Zitat Y. Yan, Y.X. Yin, Y.G. Guo et al., A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 4, 1079–1098 (2014) Y. Yan, Y.X. Yin, Y.G. Guo et al., A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 4, 1079–1098 (2014)
21.
Zurück zum Zitat W. Li, C. Hu, M. Zhou et al., Carbon-coated Mo3Sb7 composite as anode material for sodium ion batteries with long cycle life. J. Power Sources 307, 173–180 (2016) W. Li, C. Hu, M. Zhou et al., Carbon-coated Mo3Sb7 composite as anode material for sodium ion batteries with long cycle life. J. Power Sources 307, 173–180 (2016)
22.
Zurück zum Zitat M. Lao, Y. Zhang, W. Luo et al., Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 29, 1700622 (2017) M. Lao, Y. Zhang, W. Luo et al., Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 29, 1700622 (2017)
23.
Zurück zum Zitat V.L. Chevrier, G. Ceder, Challenges for na-ion negative electrodes. J. Electrochem. Soc. 158, A1011–A1014 (2011) V.L. Chevrier, G. Ceder, Challenges for na-ion negative electrodes. J. Electrochem. Soc. 158, A1011–A1014 (2011)
24.
Zurück zum Zitat X. Jian, H. Wang, G. Rao et al., Self-tunable ultrathin carbon nanocups as the electrode material of sodium-ion batteries with unprecedented capacity and stability. Chem. Eng. J. 364, 578–588 (2019) X. Jian, H. Wang, G. Rao et al., Self-tunable ultrathin carbon nanocups as the electrode material of sodium-ion batteries with unprecedented capacity and stability. Chem. Eng. J. 364, 578–588 (2019)
25.
Zurück zum Zitat F. Kong, K. Chen, S. Song et al., Metal organic framework derived CoFe@N-doped carbon/reduced graphene sheets for enhanced oxygen evolution reaction. Inorg. Chem. Front. 5, 1962–1966 (2018) F. Kong, K. Chen, S. Song et al., Metal organic framework derived CoFe@N-doped carbon/reduced graphene sheets for enhanced oxygen evolution reaction. Inorg. Chem. Front. 5, 1962–1966 (2018)
26.
Zurück zum Zitat X. Liang, K. Chen, D. Xue, A flexible and ultrahigh energy density capacitor via enhancing surface/interface of carbon cloth supported colloids. Adv. Energy Mater. 8, 1703329 (2018) X. Liang, K. Chen, D. Xue, A flexible and ultrahigh energy density capacitor via enhancing surface/interface of carbon cloth supported colloids. Adv. Energy Mater. 8, 1703329 (2018)
27.
Zurück zum Zitat K. Chen, F. Liu, D. Xue et al., Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6. Nanoscale 7, 432–439 (2014) K. Chen, F. Liu, D. Xue et al., Carbon with ultrahigh capacitance when graphene paper meets K3Fe(CN)6. Nanoscale 7, 432–439 (2014)
28.
Zurück zum Zitat J. Liu, W. Liu, K.F. Chen et al., Facile synthesis of transition-metal oxide nanocrystals embedded in hollow carbon microspheres for high-rate lithium-ion-battery anodes. Chem. Eur. J. 19, 9811–9816 (2013) J. Liu, W. Liu, K.F. Chen et al., Facile synthesis of transition-metal oxide nanocrystals embedded in hollow carbon microspheres for high-rate lithium-ion-battery anodes. Chem. Eur. J. 19, 9811–9816 (2013)
29.
Zurück zum Zitat J. Liu, Y. Zhou, F. Liu et al., One-pot synthesis of mesoporous interconnected carbon-encapsulated Fe3O4 nanospheres as superior anodes for Li-ion batteries. RSC Adv. 2, 2262–2265 (2012) J. Liu, Y. Zhou, F. Liu et al., One-pot synthesis of mesoporous interconnected carbon-encapsulated Fe3O4 nanospheres as superior anodes for Li-ion batteries. RSC Adv. 2, 2262–2265 (2012)
30.
Zurück zum Zitat Y. Li, L. Mu, Y.S. Hu et al., Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater. 2, 139–145 (2016) Y. Li, L. Mu, Y.S. Hu et al., Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Mater. 2, 139–145 (2016)
31.
Zurück zum Zitat K. Tang, L. Fu, R.J. White et al., Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2, 873–877 (2012) K. Tang, L. Fu, R.J. White et al., Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2, 873–877 (2012)
32.
Zurück zum Zitat S. Wang, L. Xia, L. Yu et al., Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 6, 1502217 (2016) S. Wang, L. Xia, L. Yu et al., Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 6, 1502217 (2016)
33.
Zurück zum Zitat Q. Long, W. Chen, X. Xiong et al., Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2, 195–201 (2015) Q. Long, W. Chen, X. Xiong et al., Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv. Sci. 2, 195–201 (2015)
34.
Zurück zum Zitat B. Xu, N. Sun, H. Liu, Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J. Mater. Chem. A 3, 20560–20566 (2015) B. Xu, N. Sun, H. Liu, Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J. Mater. Chem. A 3, 20560–20566 (2015)
35.
Zurück zum Zitat D. Li, H. Chen, G. Liu et al., Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 94, 888–894 (2015) D. Li, H. Chen, G. Liu et al., Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 94, 888–894 (2015)
36.
Zurück zum Zitat J. Xu, M. Wang, N.P. Wickramaratne et al., High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 27, 2042–2048 (2015) J. Xu, M. Wang, N.P. Wickramaratne et al., High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 27, 2042–2048 (2015)
37.
Zurück zum Zitat L. Fu, K. Tang, K. Song et al., Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6, 1384–1389 (2014) L. Fu, K. Tang, K. Song et al., Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6, 1384–1389 (2014)
38.
Zurück zum Zitat H.G. Wang, Z. Wu, F.L. Meng et al., Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. Chemsuschem 6, 56–60 (2013) H.G. Wang, Z. Wu, F.L. Meng et al., Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. Chemsuschem 6, 56–60 (2013)
39.
Zurück zum Zitat Q. Wang, X. Zhu, Y. Liu et al., Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon 127, 658–666 (2017) Q. Wang, X. Zhu, Y. Liu et al., Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon 127, 658–666 (2017)
40.
Zurück zum Zitat H. Li, F. Shen, W. Luo et al., Carbonized leaf membrane with anisotropic surfaces for sodium ion battery. ACS Appl. Mater. Interfaces. 8, 2204–2210 (2016) H. Li, F. Shen, W. Luo et al., Carbonized leaf membrane with anisotropic surfaces for sodium ion battery. ACS Appl. Mater. Interfaces. 8, 2204–2210 (2016)
41.
Zurück zum Zitat Y. Li, Y.S. Hu, H. Li et al., A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 4, 96–104 (2015) Y. Li, Y.S. Hu, H. Li et al., A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 4, 96–104 (2015)
42.
Zurück zum Zitat L. Cao, W. Hui, Z. Xu et al., Rape seed shuck derived-lamellar hard carbon as anodes for sodium-ion batteries. J. Alloy. Compd. 695, 632–637 (2017) L. Cao, W. Hui, Z. Xu et al., Rape seed shuck derived-lamellar hard carbon as anodes for sodium-ion batteries. J. Alloy. Compd. 695, 632–637 (2017)
43.
Zurück zum Zitat Z. Fang, Y. Yao, J. Wan et al., High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl. Mater. Interfaces. 9, 391–397 (2016) Z. Fang, Y. Yao, J. Wan et al., High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl. Mater. Interfaces. 9, 391–397 (2016)
44.
Zurück zum Zitat K. Chen, D. Xue, Multiple functional biomass-derived activated carbon materials for aqueous supercapacitors, lithium-ion capacitors and lithium-sulfur batteries. Chin. J. Chem. 35, 861–866 (2017) K. Chen, D. Xue, Multiple functional biomass-derived activated carbon materials for aqueous supercapacitors, lithium-ion capacitors and lithium-sulfur batteries. Chin. J. Chem. 35, 861–866 (2017)
45.
Zurück zum Zitat J. Ma, W. Huang, K. Chen et al., High surface area activated carbon synthesized from bio-based material for supercapacitor application. Nanosci. Nanotechnol. Lett. 6, 997–1000 (2014) J. Ma, W. Huang, K. Chen et al., High surface area activated carbon synthesized from bio-based material for supercapacitor application. Nanosci. Nanotechnol. Lett. 6, 997–1000 (2014)
46.
Zurück zum Zitat J. Ding, H. Wang, Z. Li et al., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7, 11004–11015 (2013) J. Ding, H. Wang, Z. Li et al., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7, 11004–11015 (2013)
47.
Zurück zum Zitat H.C. Chang, S.H. Park, S.I. Woo, Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 6, 7084–7091 (2012) H.C. Chang, S.H. Park, S.I. Woo, Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 6, 7084–7091 (2012)
48.
Zurück zum Zitat S. Mentus, G. Cirić-Marjanović, M. Trchová et al., Conducting carbonized polyaniline nanotubes. Nanotechnology 20, 245601 (2009) S. Mentus, G. Cirić-Marjanović, M. Trchová et al., Conducting carbonized polyaniline nanotubes. Nanotechnology 20, 245601 (2009)
49.
Zurück zum Zitat W.H. Shin, H.M. Jeong, B.G. Kim et al., Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett. 12, 2283–2288 (2012) W.H. Shin, H.M. Jeong, B.G. Kim et al., Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett. 12, 2283–2288 (2012)
50.
Zurück zum Zitat F. Yang, Z. Zhang, K. Du et al., Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. Carbon 91, 88–95 (2015) F. Yang, Z. Zhang, K. Du et al., Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. Carbon 91, 88–95 (2015)
51.
Zurück zum Zitat D. Yan, C. Yu, X. Zhang et al., Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery. Electrochim. Acta 191, 385–391 (2016) D. Yan, C. Yu, X. Zhang et al., Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery. Electrochim. Acta 191, 385–391 (2016)
52.
Zurück zum Zitat G.Y. Xu, J.P. Han, D. Bing et al., Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 17, 1668–1674 (2015) G.Y. Xu, J.P. Han, D. Bing et al., Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 17, 1668–1674 (2015)
53.
Zurück zum Zitat Y. Cao, L. Xiao, M.L. Sushko et al., Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012) Y. Cao, L. Xiao, M.L. Sushko et al., Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12, 3783–3787 (2012)
54.
Zurück zum Zitat E.M. Lotfabad, J. Ding, K. Cui et al., High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8, 7115–7129 (2015) E.M. Lotfabad, J. Ding, K. Cui et al., High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8, 7115–7129 (2015)
55.
Zurück zum Zitat K. Hong, Q. Long, R. Zeng et al., Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J. Mater. Chem. A 2, 12733–12738 (2014) K. Hong, Q. Long, R. Zeng et al., Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J. Mater. Chem. A 2, 12733–12738 (2014)
56.
Zurück zum Zitat Z. Zhong, G.I. Lee, C.B. Mo et al., Tailored field-emission property of patterned carbon nitride nanotubes by a selective doping of substitutional N(sN) and pyridine-like N(pN) atoms. Chem. Mater. 19, 2918–2920 (2007) Z. Zhong, G.I. Lee, C.B. Mo et al., Tailored field-emission property of patterned carbon nitride nanotubes by a selective doping of substitutional N(sN) and pyridine-like N(pN) atoms. Chem. Mater. 19, 2918–2920 (2007)
57.
Zurück zum Zitat L. Wu, D. Buchholz, C. Vaalma et al., Apple biowaste derived hard carbon as powerful anode material for Na-ion batteries. ChemElectroChem 3, 292–298 (2016) L. Wu, D. Buchholz, C. Vaalma et al., Apple biowaste derived hard carbon as powerful anode material for Na-ion batteries. ChemElectroChem 3, 292–298 (2016)
58.
Zurück zum Zitat R.R. Gaddam, D. Yang, R. Narayan et al., Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26, 346–352 (2016) R.R. Gaddam, D. Yang, R. Narayan et al., Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26, 346–352 (2016)
59.
Zurück zum Zitat Z. Zhu, F. Liang, Z. Zhou et al., Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. J. Mater. Chem. A 6, 1513–1522 (2018) Z. Zhu, F. Liang, Z. Zhou et al., Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. J. Mater. Chem. A 6, 1513–1522 (2018)
60.
Zurück zum Zitat Y. Zhang, X. Li, P. Dong et al., Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces. 10, 42796–42803 (2018) Y. Zhang, X. Li, P. Dong et al., Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries. ACS Appl. Mater. Interfaces. 10, 42796–42803 (2018)
61.
Zurück zum Zitat Q. Wang, X. Ge, J. Xu et al., Fabrication of microporous sulfur-doped carbon microtubes for high-performance sodium-ion batteries. ACS Appl. Energy Mater. 1, 6638–6645 (2018) Q. Wang, X. Ge, J. Xu et al., Fabrication of microporous sulfur-doped carbon microtubes for high-performance sodium-ion batteries. ACS Appl. Energy Mater. 1, 6638–6645 (2018)
62.
Zurück zum Zitat N. Takami, A. Satoh, M. Hara et al., Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J. Electrochem. Soc. 142, 371–379 (1995) N. Takami, A. Satoh, M. Hara et al., Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J. Electrochem. Soc. 142, 371–379 (1995)
63.
Zurück zum Zitat M. Ihsan, H. Wang, S.R. Majid et al., MoO2/Mo2C/C spheres as anode materials for lithium ion batteries. Carbon 96, 1200–1207 (2016) M. Ihsan, H. Wang, S.R. Majid et al., MoO2/Mo2C/C spheres as anode materials for lithium ion batteries. Carbon 96, 1200–1207 (2016)
Metadaten
Titel
A N/S-codoped disordered carbon with enlarged interlayer distance derived from cirsium setosum as high-performance anode for sodium ion batteries
verfasst von
Liyun Cao
Yong Wang
Hailing Hu
Jianfeng Huang
Lingjiang Kou
Zhanwei Xu
Jiayin Li
Publikationsdatum
15.11.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 24/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02509-0

Weitere Artikel der Ausgabe 24/2019

Journal of Materials Science: Materials in Electronics 24/2019 Zur Ausgabe

Neuer Inhalt