Skip to main content
Erschienen in: Neural Processing Letters 3/2017

25.10.2016

A Neural Network Approach for Solving Optimal Control Problems with Inequality Constraints and Some Applications

verfasst von: Alireza Nazemi, Rezvan Karami

Erschienen in: Neural Processing Letters | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a class of nonlinear optimal control problems with inequality constraints is considered. Based on Karush–Kuhn–Tucker optimality conditions of nonlinear optimization problems and by constructing an error function, we define an unconstrained minimization problem. In the minimization problem, we use trial solutions for the state, Lagrange multipliers, and control functions where these trial solutions are constructed by using two-layered perceptron. We then minimize the error function using a dynamic optimization method where weights and biases associated with all neurons are unknown. The stability and convergence analysis of the dynamic optimization scheme is also studied. Substituting the optimal values of the weights and biases in the trial solutions, we obtain the optimal solution of the original problem. Several examples are given to show the efficiency of the method. We also provide two applicable examples in robotic engineering.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Betts JT (2001) Practical methods for optimal control using nonlinear programming. SIAM, PhiladelphiaMATH Betts JT (2001) Practical methods for optimal control using nonlinear programming. SIAM, PhiladelphiaMATH
3.
Zurück zum Zitat Ascher UM, Mattheij RMM, Russel RD (1995) Numerical solution of boundary value problems for ordinary differential equations. SIAM, PhiladelphiaCrossRef Ascher UM, Mattheij RMM, Russel RD (1995) Numerical solution of boundary value problems for ordinary differential equations. SIAM, PhiladelphiaCrossRef
4.
5.
Zurück zum Zitat Shamsyeh Zahedi M, Saberi Nik H (2013) On homotopy analysis method applied to linear optimal control problems. Appl Math Model 37:9617–9629MathSciNetCrossRef Shamsyeh Zahedi M, Saberi Nik H (2013) On homotopy analysis method applied to linear optimal control problems. Appl Math Model 37:9617–9629MathSciNetCrossRef
6.
Zurück zum Zitat Tohidi E, SaberiNik H (2015) A bessel collocation method for solving fractional optimal control problems. Appl Math Modell 5:455–465MathSciNetCrossRef Tohidi E, SaberiNik H (2015) A bessel collocation method for solving fractional optimal control problems. Appl Math Modell 5:455–465MathSciNetCrossRef
7.
Zurück zum Zitat Jajarmi A, Pariz N, Vahidian A, Effati S (2011) A novel modal series representation approach to solve a class of nonlinear optimal control problems. Int J Innov Comput Inf Control 7:1413–1425 Jajarmi A, Pariz N, Vahidian A, Effati S (2011) A novel modal series representation approach to solve a class of nonlinear optimal control problems. Int J Innov Comput Inf Control 7:1413–1425
8.
9.
Zurück zum Zitat Yousefi SA, Dehghan M, Lotfi A (2010) Finding the optimal control of linear systems via Hes variational iteration method. Int J Comput Math 87:1042–1050MathSciNetCrossRefMATH Yousefi SA, Dehghan M, Lotfi A (2010) Finding the optimal control of linear systems via Hes variational iteration method. Int J Comput Math 87:1042–1050MathSciNetCrossRefMATH
10.
Zurück zum Zitat ElKady M, Elbarbary EME (2002) A Chebyshev expansion method for solving optimal control problems. Appl Math Comput 129:171–182MathSciNetCrossRefMATH ElKady M, Elbarbary EME (2002) A Chebyshev expansion method for solving optimal control problems. Appl Math Comput 129:171–182MathSciNetCrossRefMATH
11.
Zurück zum Zitat Elnagar GN (1997) State-control spectral Chebyshev parameterization for linearly constrained quadratic optimal control problems. J Comput Appl Math 79:19–40MathSciNetCrossRefMATH Elnagar GN (1997) State-control spectral Chebyshev parameterization for linearly constrained quadratic optimal control problems. J Comput Appl Math 79:19–40MathSciNetCrossRefMATH
12.
Zurück zum Zitat Hsu NS, Chang B (1989) Analysis and optimal control of time-varying linear systems via block-pulse functions. Int J Control 33:1107–1122MathSciNetCrossRef Hsu NS, Chang B (1989) Analysis and optimal control of time-varying linear systems via block-pulse functions. Int J Control 33:1107–1122MathSciNetCrossRef
14.
Zurück zum Zitat Hosseinpour S, Nazemi AR (2016) Solving fractional optimal control problems with fixed or free final states by Haar wavelet collocation method. IMA J Math Control Inf 33:543–561 Hosseinpour S, Nazemi AR (2016) Solving fractional optimal control problems with fixed or free final states by Haar wavelet collocation method. IMA J Math Control Inf 33:543–561
15.
Zurück zum Zitat Mansoori M, Nazemi AR (2016) Solving infinite-horizon optimal control problems of the time-delayed systems by Haar wavelet collocation method. Comput Appl Math 35:97–117 Mansoori M, Nazemi AR (2016) Solving infinite-horizon optimal control problems of the time-delayed systems by Haar wavelet collocation method. Comput Appl Math 35:97–117
16.
Zurück zum Zitat Nazemi AR, Mahmoudy N (2014) Solving infinite-horizon optimal control problems using Haar wavelet collocation method. ANZIAM J (formerly: J Aust Math Soc Ser B ) 56:179–191 Nazemi AR, Mahmoudy N (2014) Solving infinite-horizon optimal control problems using Haar wavelet collocation method. ANZIAM J (formerly: J Aust Math Soc Ser B ) 56:179–191
17.
Zurück zum Zitat Nazemi AR, Mansoori M (2016) Optimal control problems of the time-delayed systems by Haar wavelet. J Vib Control 22:2657–2670 Nazemi AR, Mansoori M (2016) Optimal control problems of the time-delayed systems by Haar wavelet. J Vib Control 22:2657–2670
18.
Zurück zum Zitat Nazemi AR, Shabani MM (2015) Numerical solution of the time-delayed optimal control problems with hybrid functions. IMA J Math 32: 623–638 Nazemi AR, Shabani MM (2015) Numerical solution of the time-delayed optimal control problems with hybrid functions. IMA J Math 32: 623–638
19.
Zurück zum Zitat Pontryagin LS, Boltyanskii V, Gamkrelidze R, Mischenko E (1962) The mathematical theory of optimal processes. Wiley Interscience, New York Pontryagin LS, Boltyanskii V, Gamkrelidze R, Mischenko E (1962) The mathematical theory of optimal processes. Wiley Interscience, New York
20.
Zurück zum Zitat Schalkoff RJ (1997) Artificial neural networks. McGraw-Hill, New YorkMATH Schalkoff RJ (1997) Artificial neural networks. McGraw-Hill, New YorkMATH
21.
Zurück zum Zitat Picton P (2000) Neural networks, 2nd edn. Palgrave, Basingstoke Picton P (2000) Neural networks, 2nd edn. Palgrave, Basingstoke
22.
Zurück zum Zitat Minsky M, Papert S (1969) Perceptrons. MIT Press, CambridgeMATH Minsky M, Papert S (1969) Perceptrons. MIT Press, CambridgeMATH
23.
Zurück zum Zitat Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle RiverMATH Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle RiverMATH
24.
Zurück zum Zitat Khanna T (1990) Foundations of neural networks. Addison-Wesley, ReadingMATH Khanna T (1990) Foundations of neural networks. Addison-Wesley, ReadingMATH
25.
Zurück zum Zitat Stanley J (1990) Introduction to neural networks, 3rd edn. California Scientific Software, Sierra Mardre Stanley J (1990) Introduction to neural networks, 3rd edn. California Scientific Software, Sierra Mardre
26.
Zurück zum Zitat Lippmann RP (1987) ) An introduction to computing with neural nets. IEEE ASSP Mag 4(2):4–22CrossRef Lippmann RP (1987) ) An introduction to computing with neural nets. IEEE ASSP Mag 4(2):4–22CrossRef
27.
Zurück zum Zitat Hornick K, Stinchcombe M, white H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366CrossRef Hornick K, Stinchcombe M, white H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366CrossRef
28.
Zurück zum Zitat Lapedes A, Farber R (1988) How neural nets work. In: Anderson DZ (ed) Neural information processing systems. AIP, New York Lapedes A, Farber R (1988) How neural nets work. In: Anderson DZ (ed) Neural information processing systems. AIP, New York
29.
Zurück zum Zitat Mckeown JJ, Stella F, Hall G (1997) Some numerical aspects of the training problem for feed-forward neural nets. Neural Netw 10(8):1455–1463CrossRef Mckeown JJ, Stella F, Hall G (1997) Some numerical aspects of the training problem for feed-forward neural nets. Neural Netw 10(8):1455–1463CrossRef
30.
Zurück zum Zitat Haykin S (2007) Neural networks : a comprehensive foundation, 3rd edn. Prentice-Hall, Upper Saddle RiverMATH Haykin S (2007) Neural networks : a comprehensive foundation, 3rd edn. Prentice-Hall, Upper Saddle RiverMATH
31.
Zurück zum Zitat Graupe D (2007) Principles of artificial neural networks, 2nd edn. World Scientific, SingaporeCrossRefMATH Graupe D (2007) Principles of artificial neural networks, 2nd edn. World Scientific, SingaporeCrossRefMATH
32.
Zurück zum Zitat Tang H, Tan KC, Yi Z (2007) Neural networks: computational models and applications. Springer, BerlinCrossRefMATH Tang H, Tan KC, Yi Z (2007) Neural networks: computational models and applications. Springer, BerlinCrossRefMATH
33.
Zurück zum Zitat Muller B, Reinhardt J, Strickland MT (2002) Neural networks: an introduction, 2nd edn. Springer-Verlag, BerlinMATH Muller B, Reinhardt J, Strickland MT (2002) Neural networks: an introduction, 2nd edn. Springer-Verlag, BerlinMATH
34.
Zurück zum Zitat Picton P (2000) Neural networks, 2nd edn. Palgrave, Basingstoke Picton P (2000) Neural networks, 2nd edn. Palgrave, Basingstoke
35.
Zurück zum Zitat Fine TL (1999) Feed forward neural network methodology. Springer-Verlag, New York Fine TL (1999) Feed forward neural network methodology. Springer-Verlag, New York
36.
Zurück zum Zitat Schalkoff RJ (1997) Artificial neural networks. McGraw-Hill, New YorkMATH Schalkoff RJ (1997) Artificial neural networks. McGraw-Hill, New YorkMATH
37.
Zurück zum Zitat Ellacott SW (1997) Mathematics of neural networks: models, algorithms and applications. Kluwer Academic Publishers, BostonCrossRef Ellacott SW (1997) Mathematics of neural networks: models, algorithms and applications. Kluwer Academic Publishers, BostonCrossRef
38.
Zurück zum Zitat Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9:987–1000CrossRef Lagaris IE, Likas A, Fotiadis DI (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9:987–1000CrossRef
39.
Zurück zum Zitat Malek A, Shekari Beidokhti R (2006) Numerical solution for high order differential equations using a hybrid neural networkOptimization method. Appl Math Comput 183:260–271MathSciNetCrossRefMATH Malek A, Shekari Beidokhti R (2006) Numerical solution for high order differential equations using a hybrid neural networkOptimization method. Appl Math Comput 183:260–271MathSciNetCrossRefMATH
40.
Zurück zum Zitat Shekari Beidokhti R, Malek A (2009) Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques. J Franklin Inst 346:898–913MathSciNetCrossRefMATH Shekari Beidokhti R, Malek A (2009) Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques. J Franklin Inst 346:898–913MathSciNetCrossRefMATH
41.
Zurück zum Zitat Tsoulos IG, Gavrilis D, Glavas E (2009) Solving differential equations with constructed neural networks. Neurocomputing 72:2385–2391CrossRef Tsoulos IG, Gavrilis D, Glavas E (2009) Solving differential equations with constructed neural networks. Neurocomputing 72:2385–2391CrossRef
42.
Zurück zum Zitat Kumar M, Yadav N (2011) Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: A survey. Comput Math Appl 62:3796–3811MathSciNetCrossRefMATH Kumar M, Yadav N (2011) Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: A survey. Comput Math Appl 62:3796–3811MathSciNetCrossRefMATH
43.
Zurück zum Zitat Dua V (2011) An artificial neural network approximation based decomposition approach for parameter estimation of system of ordinary differential equations. Comput Chem Eng 35:545–553CrossRef Dua V (2011) An artificial neural network approximation based decomposition approach for parameter estimation of system of ordinary differential equations. Comput Chem Eng 35:545–553CrossRef
44.
Zurück zum Zitat Shirvany Y, Hayati M, Moradian R (2008) Numerical solution of the nonlinear Schrodinger equation by feedforward neural networks. Commun Nonlinear Sci Numer Simul 13:2132–2145MathSciNetCrossRefMATH Shirvany Y, Hayati M, Moradian R (2008) Numerical solution of the nonlinear Schrodinger equation by feedforward neural networks. Commun Nonlinear Sci Numer Simul 13:2132–2145MathSciNetCrossRefMATH
45.
Zurück zum Zitat Shirvany Y, Hayati M, Moradian R (2009) Multilayer perceptron neural networks with novel unsupervised train ing method for numerical solution of the partial differential equations. Appl Soft Comput 9:20–29CrossRef Shirvany Y, Hayati M, Moradian R (2009) Multilayer perceptron neural networks with novel unsupervised train ing method for numerical solution of the partial differential equations. Appl Soft Comput 9:20–29CrossRef
46.
Zurück zum Zitat Balasubramaniam P, Kumaresan N (2008) Solution of generalized matrix Riccati differential equation for indefinite stochastic linear quadratic singular system using neural networks. Appl Math Comput 204:671–679MathSciNetCrossRefMATH Balasubramaniam P, Kumaresan N (2008) Solution of generalized matrix Riccati differential equation for indefinite stochastic linear quadratic singular system using neural networks. Appl Math Comput 204:671–679MathSciNetCrossRefMATH
47.
Zurück zum Zitat Becerikli Y, Konarm AF, Samad T (2003) Intelligent optimal control with dynamic neural networks. Neural Netw 16:251–259CrossRef Becerikli Y, Konarm AF, Samad T (2003) Intelligent optimal control with dynamic neural networks. Neural Netw 16:251–259CrossRef
48.
Zurück zum Zitat Sarangapani J (2006) Neural network control of nonlinear discrete-time systems. Taylor & Francis, Boca RatonCrossRef Sarangapani J (2006) Neural network control of nonlinear discrete-time systems. Taylor & Francis, Boca RatonCrossRef
49.
Zurück zum Zitat Kutz M, Lewis FL, Ge SS (2006) Neural networks in feedback control systems. In: Kutz M (ed) Mechanical engineers’ handbook: instrumentation, systems, controls, and MEMS, chap. 19, vol 2, 3rd edn. Wiley, New York Kutz M, Lewis FL, Ge SS (2006) Neural networks in feedback control systems. In: Kutz M (ed) Mechanical engineers’ handbook: instrumentation, systems, controls, and MEMS, chap. 19, vol 2, 3rd edn. Wiley, New York
50.
Zurück zum Zitat Gnecco G, Sanguineti M (2010) Suboptimal solutions to dynamic optimization problems via approximations of the policy functions. J Optim Theory Appl 146(2010):764–794MathSciNetCrossRefMATH Gnecco G, Sanguineti M (2010) Suboptimal solutions to dynamic optimization problems via approximations of the policy functions. J Optim Theory Appl 146(2010):764–794MathSciNetCrossRefMATH
51.
Zurück zum Zitat Gaggero M, Gnecco G, Sanguineti M (2014) Approximate dynamic programming for stochastic N-stage optimization with application to optimal consumption under uncertainty. Comput Optim Appl 58:31–85MathSciNetCrossRefMATH Gaggero M, Gnecco G, Sanguineti M (2014) Approximate dynamic programming for stochastic N-stage optimization with application to optimal consumption under uncertainty. Comput Optim Appl 58:31–85MathSciNetCrossRefMATH
52.
Zurück zum Zitat Liu L, Wang ZS, Zhang HG (2016) Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters. IEEE Trans Autom Sci Eng. doi:10.1109/TASE.2016.2517155 Liu L, Wang ZS, Zhang HG (2016) Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters. IEEE Trans Autom Sci Eng. doi:10.​1109/​TASE.​2016.​2517155
53.
Zurück zum Zitat Wang Z, Liu L, Shan Q, Zhang H (2015) Stability criteria for recurrent neural networks with time-varying delay based on secondary delay partitioning method. IEEE Trans Neural Netw Learn Syst 26:2589–2595MathSciNetCrossRef Wang Z, Liu L, Shan Q, Zhang H (2015) Stability criteria for recurrent neural networks with time-varying delay based on secondary delay partitioning method. IEEE Trans Neural Netw Learn Syst 26:2589–2595MathSciNetCrossRef
54.
Zurück zum Zitat Wang ZS, Liu L, Zhang HG, Xiao GY (2016) Fault-tolerant controller design for a class of nonlinear MIMO discrete-time systems via online reinforcement learning algorithm. IEEE Trans Syst Man Cybern 46:611–622CrossRef Wang ZS, Liu L, Zhang HG, Xiao GY (2016) Fault-tolerant controller design for a class of nonlinear MIMO discrete-time systems via online reinforcement learning algorithm. IEEE Trans Syst Man Cybern 46:611–622CrossRef
55.
Zurück zum Zitat Vrabie D, Lewis F (2009) Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems. Neural Netw 22:237–246CrossRefMATH Vrabie D, Lewis F (2009) Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems. Neural Netw 22:237–246CrossRefMATH
56.
Zurück zum Zitat Vrabie D, Lewis F, Levine D (2008) Neural network-based adaptive optimal controller A continuous-time formulation. Commun Comput Inf Sci 15:276–285MATH Vrabie D, Lewis F, Levine D (2008) Neural network-based adaptive optimal controller A continuous-time formulation. Commun Comput Inf Sci 15:276–285MATH
57.
Zurück zum Zitat Cheng T, Lewis FL, Abu-Khalaf M (2007) Fixed-final-time-constrained optimal control of nonlinear systems using neural network HJB approach. IEEE Trans Neural Netw 18:1725–1737CrossRef Cheng T, Lewis FL, Abu-Khalaf M (2007) Fixed-final-time-constrained optimal control of nonlinear systems using neural network HJB approach. IEEE Trans Neural Netw 18:1725–1737CrossRef
58.
Zurück zum Zitat Effati S, Pakdaman M (2013) Optimal control problem via neural networks. Neural Comput Appl 23:2093–2100CrossRef Effati S, Pakdaman M (2013) Optimal control problem via neural networks. Neural Comput Appl 23:2093–2100CrossRef
59.
Zurück zum Zitat Nazemi AR (2011) A dynamical model for solving degenerate quadratic minimax problems with constraints. J Comput Appl Math 236:1282–1295MathSciNetCrossRefMATH Nazemi AR (2011) A dynamical model for solving degenerate quadratic minimax problems with constraints. J Comput Appl Math 236:1282–1295MathSciNetCrossRefMATH
60.
Zurück zum Zitat Nazemi AR (2012) A dynamic system model for solving convex nonlinear optimization problems. Commun Nonlinear Sci Numer Simul 17:1696–1705MathSciNetCrossRefMATH Nazemi AR (2012) A dynamic system model for solving convex nonlinear optimization problems. Commun Nonlinear Sci Numer Simul 17:1696–1705MathSciNetCrossRefMATH
61.
Zurück zum Zitat Nazemi AR (2013) Solving general convex nonlinear optimization problems by an efficient neurodynamic model. Eng Appl Artif Intell 26:685–696CrossRef Nazemi AR (2013) Solving general convex nonlinear optimization problems by an efficient neurodynamic model. Eng Appl Artif Intell 26:685–696CrossRef
62.
Zurück zum Zitat Nazemi AR, Omidi F (2012) A capable neural network model for solving the maximum flow problem. J Comput Appl Math 236:3498–3513MathSciNetCrossRefMATH Nazemi AR, Omidi F (2012) A capable neural network model for solving the maximum flow problem. J Comput Appl Math 236:3498–3513MathSciNetCrossRefMATH
63.
Zurück zum Zitat Nazemi AR (2014) A neural network model for solving convex quadratic programming problems with some applications. Eng Appl Artif Intell 32:54–62CrossRef Nazemi AR (2014) A neural network model for solving convex quadratic programming problems with some applications. Eng Appl Artif Intell 32:54–62CrossRef
64.
Zurück zum Zitat Nazemi AR, Omidi F (2013) An efficient dynamic model for solving the shortest path problem. Transp Res Part C 26:1–19CrossRef Nazemi AR, Omidi F (2013) An efficient dynamic model for solving the shortest path problem. Transp Res Part C 26:1–19CrossRef
65.
Zurück zum Zitat Nazemi AR, Sharifi E (2013) Solving a class of geometric programming problems by an efficient dynamic model. Commun Nonlinear Sci Numer Simul 18:692–709MathSciNetCrossRefMATH Nazemi AR, Sharifi E (2013) Solving a class of geometric programming problems by an efficient dynamic model. Commun Nonlinear Sci Numer Simul 18:692–709MathSciNetCrossRefMATH
66.
Zurück zum Zitat Nazemi AR, Effati S (2013) An application of a merit function for solving convex programming problems. Comput Ind Eng 66:212–221CrossRef Nazemi AR, Effati S (2013) An application of a merit function for solving convex programming problems. Comput Ind Eng 66:212–221CrossRef
67.
Zurück zum Zitat Nazemi AR, Nazemi M (2014) A gradient-based neural network method for solving strictly convex quadratic programming problems. Cognit Comput 6:484–495CrossRef Nazemi AR, Nazemi M (2014) A gradient-based neural network method for solving strictly convex quadratic programming problems. Cognit Comput 6:484–495CrossRef
68.
Zurück zum Zitat Pan S-H, Chen J-S (2010) A semismooth Newton method for the SOCCP based on a one-parametric class of SOC complementarity functions. Comput Optim Appl 45:59–88MathSciNetCrossRefMATH Pan S-H, Chen J-S (2010) A semismooth Newton method for the SOCCP based on a one-parametric class of SOC complementarity functions. Comput Optim Appl 45:59–88MathSciNetCrossRefMATH
69.
Zurück zum Zitat Sun D, Sun J (2005) Strong semismoothness of the Fischer–Burmeister SDC and SOC complementarity functions. Math Program 103(3):575–581MathSciNetCrossRefMATH Sun D, Sun J (2005) Strong semismoothness of the Fischer–Burmeister SDC and SOC complementarity functions. Math Program 103(3):575–581MathSciNetCrossRefMATH
70.
Zurück zum Zitat Facchinei F, Jiang H, Qi L (1999) A smoothing method for mathematical programs with equilibrium constraints. Math Program 35:107–134MathSciNetCrossRefMATH Facchinei F, Jiang H, Qi L (1999) A smoothing method for mathematical programs with equilibrium constraints. Math Program 35:107–134MathSciNetCrossRefMATH
72.
Zurück zum Zitat Funahashi K (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2:183–192CrossRef Funahashi K (1989) On the approximate realization of continuous mappings by neural networks. Neural Netw 2:183–192CrossRef
73.
Zurück zum Zitat Hornik K, Stinchombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366CrossRef Hornik K, Stinchombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366CrossRef
74.
Zurück zum Zitat Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlinear programming—theory and algorithms, 3rd edn. Wiley, HobokenCrossRefMATH Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlinear programming—theory and algorithms, 3rd edn. Wiley, HobokenCrossRefMATH
75.
Zurück zum Zitat Zhang X-S (2000) Neural networks in optimization. Kluwer Academic Publishers, DordrechtCrossRefMATH Zhang X-S (2000) Neural networks in optimization. Kluwer Academic Publishers, DordrechtCrossRefMATH
76.
Zurück zum Zitat Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer-Verlag, BerlinMATH Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer-Verlag, BerlinMATH
77.
Zurück zum Zitat Lee KY, El-Sharkawi MA (2008) Modern heuristic optimization techniques: theory and applications to power systems. Wiley-Interscience, PiscatawayCrossRef Lee KY, El-Sharkawi MA (2008) Modern heuristic optimization techniques: theory and applications to power systems. Wiley-Interscience, PiscatawayCrossRef
78.
Zurück zum Zitat Miller RK, Michel AN (1982) Ordinary differential equations. Academic Press, New YorkMATH Miller RK, Michel AN (1982) Ordinary differential equations. Academic Press, New YorkMATH
79.
Zurück zum Zitat Sun J, Chen J-S, Ko C-H (2012) Neural networks for solving second-order cone constrained variational inequality problem. Comput Optim Appl 51:623–648MathSciNetCrossRefMATH Sun J, Chen J-S, Ko C-H (2012) Neural networks for solving second-order cone constrained variational inequality problem. Comput Optim Appl 51:623–648MathSciNetCrossRefMATH
80.
Zurück zum Zitat Hale JK (1969) Ordinary differential equations. Wiley-Interscience, New YorkMATH Hale JK (1969) Ordinary differential equations. Wiley-Interscience, New YorkMATH
81.
82.
Zurück zum Zitat Annapragada M, Agrawal SK (1999) Design and experiments on a free-floating planar robot for optimal chase and capture operations in space. Robot Auton Syst 26:281–297CrossRef Annapragada M, Agrawal SK (1999) Design and experiments on a free-floating planar robot for optimal chase and capture operations in space. Robot Auton Syst 26:281–297CrossRef
Metadaten
Titel
A Neural Network Approach for Solving Optimal Control Problems with Inequality Constraints and Some Applications
verfasst von
Alireza Nazemi
Rezvan Karami
Publikationsdatum
25.10.2016
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 3/2017
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-016-9562-6

Weitere Artikel der Ausgabe 3/2017

Neural Processing Letters 3/2017 Zur Ausgabe

Neuer Inhalt