Skip to main content
Erschienen in: International Journal of Material Forming 2/2020

30.03.2019 | Original Research

A new analytical method for determination of the flow curve for high-strength sheet steels using the plane strain compression test

verfasst von: Charles Chermette, Klaus Unruh, Ilya Peshekhodov, Jérôme Chottin, Tudor Balan

Erschienen in: International Journal of Material Forming | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new analytical method to determine the effective tool width in contact with the sheet workpiece in the plane strain compression test, which changes during the test if a tool with a radius is used, is proposed. A detailed description of this method and the corresponding procedure of the flow curve determination for high-strength sheet steels are presented. The underpinning assumptions of the method are validated with the help of the FEA and the validation results are presented. Furthermore, with the help of the FEA, the main disadvantages of the plane strain compression test – strain inhomogeneity and possible tool misalignment – are investigated. It is shown that these disadvantages become negligible if a tool with a sufficiently large radius is used. The experimental validation of the proposed method was performed with the help of the uniaxial tensile test, the plane strain compression test and hydraulic bulge test on ten common high-strength and advanced high-strength sheet steels in the ultimate tensile strength range between 460 and 1260 MPa and the thickness range between 0.8 and 3.1 mm. The paper demonstrates that with the proposed analytical method for determination of the effective tool width, the plane strain compression test equipped with a tool with a sufficiently large radius becomes more appealing as a cost-efficient alternative to the hydraulic bulge test for the flow curve determination of high-strength sheet steels than it has been considered until now.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The same convention is consistently applied to the calculation of the corresponding stress.
 
2
The curve was digitized and a factor ½ was applied since Becker [17] investigated a twice bigger geometry than here (R = 4 mm, h0=6 mm and a = 6 mm).
 
Literatur
1.
Zurück zum Zitat Brunet M, Morestin F (2001) Experimental and analytical necking studies of anisotropic sheet metals. J Mater Process Technol 112(2-3):214–226CrossRef Brunet M, Morestin F (2001) Experimental and analytical necking studies of anisotropic sheet metals. J Mater Process Technol 112(2-3):214–226CrossRef
2.
Zurück zum Zitat Hyun HC, Kim M, Bang S, Lee H (2014) On acquiring true stress-strain curves for sheet specimens using tensile test and FE analysis based on a local necking criterion. J Mater Res 29(5):695–707CrossRef Hyun HC, Kim M, Bang S, Lee H (2014) On acquiring true stress-strain curves for sheet specimens using tensile test and FE analysis based on a local necking criterion. J Mater Res 29(5):695–707CrossRef
3.
Zurück zum Zitat Poortmans S, Diouf B, Habraken A, Verlinden B (2007) Correcting tensile test results of ECAE-deformed aluminum. Scr Mater 56(9):749–752CrossRef Poortmans S, Diouf B, Habraken A, Verlinden B (2007) Correcting tensile test results of ECAE-deformed aluminum. Scr Mater 56(9):749–752CrossRef
4.
Zurück zum Zitat Coppieters S, Cooreman S, Sol H, Van Houtte P, Debruyne D (2011) Identification of the post-necking hardening behaviour of sheet metal by comparison of the internal and external work in the necking zone. J Mater Process Technol 211(3):545–552CrossRef Coppieters S, Cooreman S, Sol H, Van Houtte P, Debruyne D (2011) Identification of the post-necking hardening behaviour of sheet metal by comparison of the internal and external work in the necking zone. J Mater Process Technol 211(3):545–552CrossRef
5.
Zurück zum Zitat Pipard JM, Balan T, Abed-Meraim T, Lemoine X (2013) Elasto-visco-plastic modeling of mild steels for sheet forming applications over a large range of strain rates. Int J Solids Struct 50(16-17):2691–2700CrossRef Pipard JM, Balan T, Abed-Meraim T, Lemoine X (2013) Elasto-visco-plastic modeling of mild steels for sheet forming applications over a large range of strain rates. Int J Solids Struct 50(16-17):2691–2700CrossRef
6.
Zurück zum Zitat Tardif N, Kyriakides S (2012) Determination of anisotropy and material hardening, for aluminum sheet metal. Int J Solids Struct 49(25):3496–3506CrossRef Tardif N, Kyriakides S (2012) Determination of anisotropy and material hardening, for aluminum sheet metal. Int J Solids Struct 49(25):3496–3506CrossRef
7.
Zurück zum Zitat Mulder J, Vegter H, Aretz H, Keller S, van den Boogaard AH (2015) Accurate determination of flow curves using the bulge test with optical measuring systems. J Mater Proc Technol 226:169–187CrossRef Mulder J, Vegter H, Aretz H, Keller S, van den Boogaard AH (2015) Accurate determination of flow curves using the bulge test with optical measuring systems. J Mater Proc Technol 226:169–187CrossRef
8.
Zurück zum Zitat An YG, Vegter H (2005) Analytical and experimental study of frictional behavior in through-thickness compression test. J Mater Proc Technol 160(2):148–155CrossRef An YG, Vegter H (2005) Analytical and experimental study of frictional behavior in through-thickness compression test. J Mater Proc Technol 160(2):148–155CrossRef
9.
Zurück zum Zitat Coppieters S, Lava P, Sol H, Van Bael A, Van Houtte P, Debruyne D (2010) Determination of the flow stress and contact friction of sheet metal in a multi-layered upsetting test. J Mater Proc Technol 210(10):1290–1296CrossRef Coppieters S, Lava P, Sol H, Van Bael A, Van Houtte P, Debruyne D (2010) Determination of the flow stress and contact friction of sheet metal in a multi-layered upsetting test. J Mater Proc Technol 210(10):1290–1296CrossRef
10.
Zurück zum Zitat Bouvier S, Haddadi H, Levée P, Teodosiu C (2006) Simple shear tests: experimental techniques and characterization of the plastic anisotropy of rolled sheets at large strains. J Mater Proc Technol 172(1):96–103CrossRef Bouvier S, Haddadi H, Levée P, Teodosiu C (2006) Simple shear tests: experimental techniques and characterization of the plastic anisotropy of rolled sheets at large strains. J Mater Proc Technol 172(1):96–103CrossRef
11.
Zurück zum Zitat Yin Q, Zillmann B, Suttner S, Gerstein G, Biasutti M, Tekkaya AE, Wagner MFX, Merklein M, Schaper M, Halle T, Brosius A (2014) An experimental and numerical investigation of different shear test configurations for sheet metal characterization. Int J Solids Struct 51(5):1066–1074CrossRef Yin Q, Zillmann B, Suttner S, Gerstein G, Biasutti M, Tekkaya AE, Wagner MFX, Merklein M, Schaper M, Halle T, Brosius A (2014) An experimental and numerical investigation of different shear test configurations for sheet metal characterization. Int J Solids Struct 51(5):1066–1074CrossRef
12.
Zurück zum Zitat Pietrzyk M, Lenard JG, Dalton GM (1993) A study of the plane strain compression test. CIRP Ann 42(1):331–334CrossRef Pietrzyk M, Lenard JG, Dalton GM (1993) A study of the plane strain compression test. CIRP Ann 42(1):331–334CrossRef
13.
Zurück zum Zitat Semiatin SL, Altan T (2010) Measurement and interpretation of flow stress data for the simulation of metal-forming processes. Air Force Research Laboratory Report, USA Semiatin SL, Altan T (2010) Measurement and interpretation of flow stress data for the simulation of metal-forming processes. Air Force Research Laboratory Report, USA
14.
Zurück zum Zitat Aksenov S, Kliber J, Puzino Y, Bober S (2015) Processing of plane strain compression test results for investigation of AISI-304 stainless steel constitutive behavior. J Chem Techn Metallurgy 50:644–650 Aksenov S, Kliber J, Puzino Y, Bober S (2015) Processing of plane strain compression test results for investigation of AISI-304 stainless steel constitutive behavior. J Chem Techn Metallurgy 50:644–650
15.
Zurück zum Zitat Rees D (2012) Plane strain compression of alluminum alloy sheets. Mater Des 39:495–503CrossRef Rees D (2012) Plane strain compression of alluminum alloy sheets. Mater Des 39:495–503CrossRef
16.
Zurück zum Zitat Becker N, Pöhlandt K (1989) Improvement of the plane-strain compression test for determining flow curves. Ann CIRP 38(1):227–230CrossRef Becker N, Pöhlandt K (1989) Improvement of the plane-strain compression test for determining flow curves. Ann CIRP 38(1):227–230CrossRef
17.
Zurück zum Zitat Becker N (1994) Weiterentwicklung von Verfharen zur Aufnahme von Fließkurven im Bereich hoher Umformgrade. Doctoral Thesis, University of Stuttgart, Germany Becker N (1994) Weiterentwicklung von Verfharen zur Aufnahme von Fließkurven im Bereich hoher Umformgrade. Doctoral Thesis, University of Stuttgart, Germany
18.
Zurück zum Zitat Gelin JC, Ghouati O, Shahani R (1994) Modelling the plane strain compression test to obtain constitutive equations of aluminium alloys. Int J Mech Sci 36(9):773–796CrossRef Gelin JC, Ghouati O, Shahani R (1994) Modelling the plane strain compression test to obtain constitutive equations of aluminium alloys. Int J Mech Sci 36(9):773–796CrossRef
19.
Zurück zum Zitat Loveday MS, Mahon GJ, Roebuck B, Lacey AJ, Palmiere EJ, Sellars CM, von der Winden MR (2006) Measurement of flow stress in hot plane strain compression tests. Mater High Temp 23(2):85–118CrossRef Loveday MS, Mahon GJ, Roebuck B, Lacey AJ, Palmiere EJ, Sellars CM, von der Winden MR (2006) Measurement of flow stress in hot plane strain compression tests. Mater High Temp 23(2):85–118CrossRef
20.
Zurück zum Zitat Boldetti C, Pinna C, Howard IC (2006) Measurement and prediction of deformation in plane strain compression tests of AA5182. Mater Sci Technol 22(11):1380–1386CrossRef Boldetti C, Pinna C, Howard IC (2006) Measurement and prediction of deformation in plane strain compression tests of AA5182. Mater Sci Technol 22(11):1380–1386CrossRef
21.
Zurück zum Zitat Kowalski B, Lacey AJ, Sellars CM (2003) Correction of plane strain compression data for the effects of inhomogeneous deformation. Mater Sci Technol 19(11):1564–1570CrossRef Kowalski B, Lacey AJ, Sellars CM (2003) Correction of plane strain compression data for the effects of inhomogeneous deformation. Mater Sci Technol 19(11):1564–1570CrossRef
22.
Zurück zum Zitat Kowalski B, Sellars CM, Pietrzyk M (2006) Identification of rheological parameters on the basis of plane strain compression tests on specimens of various initial dimensions. Comput Mater Sci 35(2):92–97CrossRef Kowalski B, Sellars CM, Pietrzyk M (2006) Identification of rheological parameters on the basis of plane strain compression tests on specimens of various initial dimensions. Comput Mater Sci 35(2):92–97CrossRef
23.
Zurück zum Zitat Ismar H, Mahrenholtz O (1978) Technische Plastomechanik. Fried. Vieweg & Sohn, Braunschweig/Wiesbaden, Germany, pp. 112–125 Ismar H, Mahrenholtz O (1978) Technische Plastomechanik. Fried. Vieweg & Sohn, Braunschweig/Wiesbaden, Germany, pp. 112–125
24.
Zurück zum Zitat Kubié J, Delamare F (1980) Mécanique des solides anélastiques. Comptes Rendus de l’Académie des. Sciences 291:97–100 Kubié J, Delamare F (1980) Mécanique des solides anélastiques. Comptes Rendus de l’Académie des. Sciences 291:97–100
25.
Zurück zum Zitat Mirza MS, Sellars CM (2001) Modelling the hot plane strain compression test. Part 1 – effect of specimen geometry, strain rate and friction on deformation. Mater Sci Technol 17(9):1133–1141CrossRef Mirza MS, Sellars CM (2001) Modelling the hot plane strain compression test. Part 1 – effect of specimen geometry, strain rate and friction on deformation. Mater Sci Technol 17(9):1133–1141CrossRef
26.
Zurück zum Zitat Mirza MS, Sellars CM (2001) Modelling the hot plane strain compression test. Part 2 – effect of friction and specimen geometry on spread. Mater Sci Technol 17(9):1142–1148CrossRef Mirza MS, Sellars CM (2001) Modelling the hot plane strain compression test. Part 2 – effect of friction and specimen geometry on spread. Mater Sci Technol 17(9):1142–1148CrossRef
27.
Zurück zum Zitat Shi H, McLaren AJ, Sellars CM, Shahani R, Bolingbroke R (1997) Hot plate strain compression testing of aluminium alloys. J Test Eval 25(1):61–73CrossRef Shi H, McLaren AJ, Sellars CM, Shahani R, Bolingbroke R (1997) Hot plate strain compression testing of aluminium alloys. J Test Eval 25(1):61–73CrossRef
28.
Zurück zum Zitat Silk NJ, von der Winden MR (1999) Interpretation of hot plane strain compression testing of aluminium specimens. Mater Sci Technol 15(3):295–300CrossRef Silk NJ, von der Winden MR (1999) Interpretation of hot plane strain compression testing of aluminium specimens. Mater Sci Technol 15(3):295–300CrossRef
29.
Zurück zum Zitat Hosford WF (1972) A generalised isotropic yield criterion. J Appl Mech 39(2):607–609CrossRef Hosford WF (1972) A generalised isotropic yield criterion. J Appl Mech 39(2):607–609CrossRef
30.
Zurück zum Zitat Vucetic M, Bouguecha A, Peshekhodov I, Götze T, Huinink T, Friebe H, Möller T, Behrens B.-A. (2011) Numerical validation of analytical biaxial true stress – true strain curves from the bulge test, Proc. Int. Conf. and Workshop on Numerical Simulation of Sheet Metal Forming Processes Vucetic M, Bouguecha A, Peshekhodov I, Götze T, Huinink T, Friebe H, Möller T, Behrens B.-A. (2011) Numerical validation of analytical biaxial true stress – true strain curves from the bulge test, Proc. Int. Conf. and Workshop on Numerical Simulation of Sheet Metal Forming Processes
31.
Zurück zum Zitat Mirza MS, Sellars CM (2007) Modelling hot plane strain compression test. Part 3 – effect of asymmetric conditions. Mater Sci Technol 23(5):567–576CrossRef Mirza MS, Sellars CM (2007) Modelling hot plane strain compression test. Part 3 – effect of asymmetric conditions. Mater Sci Technol 23(5):567–576CrossRef
Metadaten
Titel
A new analytical method for determination of the flow curve for high-strength sheet steels using the plane strain compression test
verfasst von
Charles Chermette
Klaus Unruh
Ilya Peshekhodov
Jérôme Chottin
Tudor Balan
Publikationsdatum
30.03.2019
Verlag
Springer Paris
Erschienen in
International Journal of Material Forming / Ausgabe 2/2020
Print ISSN: 1960-6206
Elektronische ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-019-01485-4

Weitere Artikel der Ausgabe 2/2020

International Journal of Material Forming 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.