Skip to main content

2016 | OriginalPaper | Buchkapitel

4. A New Approach to Energy Conversion Technology

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A nuclear reactor produces and controls the release of energy from splitting the atoms of uranium. Uranium-fueled nuclear power is a clean and efficient way of boiling water to make the steam that drives turbine generators. Except for the reactor itself, a nuclear power station works like most coal- or gas-fired power stations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zohuri, B. (2014). Innovative combined Brayton open cycle systems for the next generation nuclear power plants. PhD Dissertation, Nuclear Engineering Department, University of New Mexico. Zohuri, B. (2014). Innovative combined Brayton open cycle systems for the next generation nuclear power plants. PhD Dissertation, Nuclear Engineering Department, University of New Mexico.
2.
Zurück zum Zitat Eastop, T. D., & Croft, D. R. (1990). Energy efficiency. New York: Longman. Eastop, T. D., & Croft, D. R. (1990). Energy efficiency. New York: Longman.
3.
Zurück zum Zitat Zohuri, B., & McDaniel, P. J. (2014). Thermodynamics in nuclear power plant systems. Heidelberg: Springer. Zohuri, B., & McDaniel, P. J. (2014). Thermodynamics in nuclear power plant systems. Heidelberg: Springer.
4.
Zurück zum Zitat Zohuri, B., & Fathi, N. (2015). Thermal-hydraulic analysis of nuclear reactors. Heidelberg: Springer. Zohuri, B., & Fathi, N. (2015). Thermal-hydraulic analysis of nuclear reactors. Heidelberg: Springer.
5.
Zurück zum Zitat Necati Ozisik, M. (1985). Heat transfer: A basic approach. New York: McGraw-Hill. Necati Ozisik, M. (1985). Heat transfer: A basic approach. New York: McGraw-Hill.
6.
Zurück zum Zitat Incropera, F. P., & DeWitt, D. P. (1990). Fundamentals of heat and mass transfer (3rd ed., pp. 658–660). New York: Wiley. Incropera, F. P., & DeWitt, D. P. (1990). Fundamentals of heat and mass transfer (3rd ed., pp. 658–660). New York: Wiley.
7.
Zurück zum Zitat Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2006). Fundamentals of heat and mass transfer (6th ed., pp. 686–688). New York: John Wiley & Sons. Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2006). Fundamentals of heat and mass transfer (6th ed., pp. 686–688). New York: John Wiley & Sons.
8.
Zurück zum Zitat Zohuri, B., McDaniel, P. J., & de Olivera, C. (2014). Air Brayton cycles for nuclear power plants. Submitted for Review. Zohuri, B., McDaniel, P. J., & de Olivera, C. (2014). Air Brayton cycles for nuclear power plants. Submitted for Review.
9.
Zurück zum Zitat Zohuri, B., McDaniel, P. J., & de Olivera, C. (2014). A comparison of a recuperated open cycle (Air) Brayton power conversion system with the traditional steam Rankine cycle for the next generation nuclear power plant. ANS Transactions, Reno, Nevada, June, 2014. Zohuri, B., McDaniel, P. J., & de Olivera, C. (2014). A comparison of a recuperated open cycle (Air) Brayton power conversion system with the traditional steam Rankine cycle for the next generation nuclear power plant. ANS Transactions, Reno, Nevada, June, 2014.
10.
Zurück zum Zitat McDaniel, P. J., Zohuri, B., & de Olivera, C. (2014). A combined cycle power conversion system for small modular LMFBRs. ANS Transactions, Anaheim, California, November, 2014. McDaniel, P. J., Zohuri, B., & de Olivera, C. (2014). A combined cycle power conversion system for small modular LMFBRs. ANS Transactions, Anaheim, California, November, 2014.
11.
Zurück zum Zitat McDaniel, P. J., Zohuri, B., de Oliveira, C., & Cole, J. (2012). A combined cycle power conversion system for the next generation nuclear power plant. ANS Transactions, San Diego, California, November, 2012. McDaniel, P. J., Zohuri, B., de Oliveira, C., & Cole, J. (2012). A combined cycle power conversion system for the next generation nuclear power plant. ANS Transactions, San Diego, California, November, 2012.
13.
Zurück zum Zitat Pasch, J., Conboy, T., Fleming, D., & Rochau, G. (2012). Supercritical CO2 recompression Brayton cycle: Completed assembly description. SANDIA REPORT SAND2012-9546. Unlimited Release Printed, October 2012. Pasch, J., Conboy, T., Fleming, D., & Rochau, G. (2012). Supercritical CO2 recompression Brayton cycle: Completed assembly description. SANDIA REPORT SAND2012-9546. Unlimited Release Printed, October 2012.
15.
Zurück zum Zitat Kays, W. M., & London, A. L. (1984). Compact heat exchangers (3rd ed.). New York: McGraw-Hill. Kays, W. M., & London, A. L. (1984). Compact heat exchangers (3rd ed.). New York: McGraw-Hill.
16.
Zurück zum Zitat Shah, R. K. (Ed.). (1997). Compact heat exchangers for the process industries. New York: Begell House. Shah, R. K. (Ed.). (1997). Compact heat exchangers for the process industries. New York: Begell House.
17.
Zurück zum Zitat Pansini, A. J., & Smalling, K. D. (1991). Guide to electric power generation. Lilburn, GA: The Fairmont Press. Pansini, A. J., & Smalling, K. D. (1991). Guide to electric power generation. Lilburn, GA: The Fairmont Press.
18.
Zurück zum Zitat Peterson, P., Zhao, H., Ballinger, R., Fuller, R., Forsha, M., Nichols, B., Oh, C., & Vernon, M. E. (2004). Next generation nuclear plant power conversion study: Technology options assessment, September 1, 2004. Peterson, P., Zhao, H., Ballinger, R., Fuller, R., Forsha, M., Nichols, B., Oh, C., & Vernon, M. E. (2004). Next generation nuclear plant power conversion study: Technology options assessment, September 1, 2004.
19.
Zurück zum Zitat Jones, C., & Jacob, J., III. (2000). Economic and technical considerations for combined-cycle performance-enhancement options. GER-4200. Schenectady, NY: GE Power Systems. Jones, C., & Jacob, J., III. (2000). Economic and technical considerations for combined-cycle performance-enhancement options. GER-4200. Schenectady, NY: GE Power Systems.
20.
Zurück zum Zitat Langston, L. S., & Opdyke, G. (1997). Introduction to gas turbine for non-engineers. Global Gas Turbine News, 37(2). Langston, L. S., & Opdyke, G. (1997). Introduction to gas turbine for non-engineers. Global Gas Turbine News, 37(2).
21.
Zurück zum Zitat Zohuri, B. (2015). Combined cycle driven efficiency for next generation nuclear power plants: An innovative design approach. Heidelberg: Springer. Zohuri, B. (2015). Combined cycle driven efficiency for next generation nuclear power plants: An innovative design approach. Heidelberg: Springer.
Metadaten
Titel
A New Approach to Energy Conversion Technology
verfasst von
Bahman Zohuri
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-29838-2_4