Skip to main content
Erschienen in: Continuum Mechanics and Thermodynamics 4/2021

04.05.2021 | Original Article

A new approach to solving the solid mechanics problems with matter supply

verfasst von: Elena A. Ivanova, Luis Eduardo Jatar Montaño

Erschienen in: Continuum Mechanics and Thermodynamics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We discuss some aspects of using the spatial description and the finite volume method as applied to the solid mechanics problems. The main objective is to study the differential equation relating the strain measure to the velocity gradient. We show that this equation can be reduced to an integral form and the obtained equation has the structure of the balance equation without a source term. On the one hand, such form of equation for the strain measure is convenient when dynamical problems of solid mechanics are solved by using the finite volume method. On the other hand, the balance equation allows us to look at the strain measure as a parameter of state in a broader sense, not as the purely geometrical characteristic. We believe that this interpretation of the strain measure may open up new prospects for describing the processes connected with the substance supply into solids. In order to solve such problems, we suggest to add a source term into the balance equation for the strain measure. We discuss this idea from different points of view. We also solve some problems where the stress–strain state of solids is caused by the source terms in the balance equation for the strain measure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Malvern, E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall Inc, Englewood Cliffs (1969) Malvern, E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall Inc, Englewood Cliffs (1969)
2.
Zurück zum Zitat Truesdell, C.: A First Course in Rational Continuum Mechanics. The John Hopkins University, Maryland, Baltimore (1972) Truesdell, C.: A First Course in Rational Continuum Mechanics. The John Hopkins University, Maryland, Baltimore (1972)
3.
Zurück zum Zitat Eringen, C.: Mechanics of Continua. Robert E. Krieger Publishing Company, Huntington (1980)MATH Eringen, C.: Mechanics of Continua. Robert E. Krieger Publishing Company, Huntington (1980)MATH
4.
Zurück zum Zitat Batchelor, G.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1970) Batchelor, G.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1970)
5.
Zurück zum Zitat Loitsyansky, L.G.: Fluid Mechanics. Nauka, Moscow (1987).. ((In Russian)) Loitsyansky, L.G.: Fluid Mechanics. Nauka, Moscow (1987).. ((In Russian))
6.
Zurück zum Zitat Daily, J., Harleman, D.: Fluid Dynamics. Addison-Wesley, Massachusetts (1966)MATH Daily, J., Harleman, D.: Fluid Dynamics. Addison-Wesley, Massachusetts (1966)MATH
7.
Zurück zum Zitat Arienti, M., Hung, P., Morano, E., Shepherd, J.E.: A level set approach to Eulerian–Lagrangian coupling. J. Comput. Phys. 185, 213–251 (2003)ADSMATHCrossRef Arienti, M., Hung, P., Morano, E., Shepherd, J.E.: A level set approach to Eulerian–Lagrangian coupling. J. Comput. Phys. 185, 213–251 (2003)ADSMATHCrossRef
8.
Zurück zum Zitat Donea, J., Giuliani, S., Halleux, J.P.: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluidstructure interaction. Comput. Method. Appl. Mech. 33, 689–723 (1982)MATHCrossRef Donea, J., Giuliani, S., Halleux, J.P.: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluidstructure interaction. Comput. Method. Appl. Mech. 33, 689–723 (1982)MATHCrossRef
9.
Zurück zum Zitat Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitraty Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974)ADSMATHCrossRef Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitraty Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974)ADSMATHCrossRef
10.
Zurück zum Zitat McGurn, M.T., Ruggirello, K.P., DesJardin, P.E.: An Eulerian–Lagrangian moving inmersed interface method for simulation burning solids. J. Comput. Phys. 241, 364–387 (2013)ADSMathSciNetMATHCrossRef McGurn, M.T., Ruggirello, K.P., DesJardin, P.E.: An Eulerian–Lagrangian moving inmersed interface method for simulation burning solids. J. Comput. Phys. 241, 364–387 (2013)ADSMathSciNetMATHCrossRef
11.
Zurück zum Zitat Surana, K.S., Blackwell, B., Powell, M., Reddy, J.N.: Mathematical models for fluid–solid interaction and their numerical solutions. J. Fluid. Struct. 50, 184–216 (2014)ADSCrossRef Surana, K.S., Blackwell, B., Powell, M., Reddy, J.N.: Mathematical models for fluid–solid interaction and their numerical solutions. J. Fluid. Struct. 50, 184–216 (2014)ADSCrossRef
12.
Zurück zum Zitat Brazgina, O.V., Ivanova, E.A., Vilchevskaya, E.N.: Saturated porous continua in the frame of hybrid description. Contin. Mech. Thermodyn. 28(5), 1553–1581 (2016)ADSMathSciNetMATHCrossRef Brazgina, O.V., Ivanova, E.A., Vilchevskaya, E.N.: Saturated porous continua in the frame of hybrid description. Contin. Mech. Thermodyn. 28(5), 1553–1581 (2016)ADSMathSciNetMATHCrossRef
13.
Zurück zum Zitat Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009)MathSciNetMATHCrossRef Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3–4), 774–787 (2009)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Chung, T.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2012) Chung, T.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2012)
15.
Zurück zum Zitat Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Analysis. ElSevier, Netherlands (2005)MATH Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Analysis. ElSevier, Netherlands (2005)MATH
16.
Zurück zum Zitat Chandrupatla, T.R., Belegundu, A.D.: Introduction to Finite Elements in Engineering. Prentice Hall, United States (2002)MATH Chandrupatla, T.R., Belegundu, A.D.: Introduction to Finite Elements in Engineering. Prentice Hall, United States (2002)MATH
18.
Zurück zum Zitat Bowen, R.M.: Theory of Mixtures, Part I. Continuum Physics. III. Ed. A.C. Eringen. Academic Press, New York (1976) Bowen, R.M.: Theory of Mixtures, Part I. Continuum Physics. III. Ed. A.C. Eringen. Academic Press, New York (1976)
19.
Zurück zum Zitat Miller, G.H., Colella, P.: A conservative three-dimensional Eulerian method for coupled fluid-solid shock capturing. J. Comput. Phys. 183(1), 26–82 (2002)ADSMathSciNetMATHCrossRef Miller, G.H., Colella, P.: A conservative three-dimensional Eulerian method for coupled fluid-solid shock capturing. J. Comput. Phys. 183(1), 26–82 (2002)ADSMathSciNetMATHCrossRef
20.
Zurück zum Zitat Benson, D.J., Okazawa, S.: Contact in a multimaterial Eulerian finite element fomulation. Comput. Methods Appl. Mech. Eng. 193, 4277–4298 (2004)ADSMATHCrossRef Benson, D.J., Okazawa, S.: Contact in a multimaterial Eulerian finite element fomulation. Comput. Methods Appl. Mech. Eng. 193, 4277–4298 (2004)ADSMATHCrossRef
21.
Zurück zum Zitat Al-Athel, K.S., Gadala, M.S.: Eulerian volume of solid (VOS) approach in solid mechanics and metal forming. Comput. Methods Appl. Mech. Eng. 200(25–28), 2145–2159 (2011)ADSMathSciNetMATHCrossRef Al-Athel, K.S., Gadala, M.S.: Eulerian volume of solid (VOS) approach in solid mechanics and metal forming. Comput. Methods Appl. Mech. Eng. 200(25–28), 2145–2159 (2011)ADSMathSciNetMATHCrossRef
22.
Zurück zum Zitat Schoch, S., Nordin-Bates, K., Nikiforakis, N.: An Eulerian algorithm for coupled simulations of elastoplastic-solids and condensed-phase explosives. J. Comput. Phys. 252, 163–194 (2013)ADSMathSciNetMATHCrossRef Schoch, S., Nordin-Bates, K., Nikiforakis, N.: An Eulerian algorithm for coupled simulations of elastoplastic-solids and condensed-phase explosives. J. Comput. Phys. 252, 163–194 (2013)ADSMathSciNetMATHCrossRef
23.
Zurück zum Zitat Ortega, A.L., Lombardini, M., Pullin, D.I., Meiron, D.I.: Numerical simulation of elastic–plastic solid mechanics using an Eulerian stretch tensor approach and HLLD Riemann solver. J. Comput. Phys. 257, 414–441 (2014)ADSMathSciNetMATHCrossRef Ortega, A.L., Lombardini, M., Pullin, D.I., Meiron, D.I.: Numerical simulation of elastic–plastic solid mechanics using an Eulerian stretch tensor approach and HLLD Riemann solver. J. Comput. Phys. 257, 414–441 (2014)ADSMathSciNetMATHCrossRef
24.
Zurück zum Zitat Ivanova, E.A., Matias, D.V., Stepanov, M.D.: Employment of Eulerian, Lagrangian, and Arbitrary Lagrangian–Eulerian decription for crack opening problem. Mater. Phys. Mech. 42, 470–483 (2019) Ivanova, E.A., Matias, D.V., Stepanov, M.D.: Employment of Eulerian, Lagrangian, and Arbitrary Lagrangian–Eulerian decription for crack opening problem. Mater. Phys. Mech. 42, 470–483 (2019)
25.
Zurück zum Zitat Altenbach, H., Naumenko, K., Zhilin, P.A.: A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Contin. Mech. Thermodyn. 15(6), 539–570 (2003)ADSMathSciNetMATHCrossRef Altenbach, H., Naumenko, K., Zhilin, P.A.: A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Contin. Mech. Thermodyn. 15(6), 539–570 (2003)ADSMathSciNetMATHCrossRef
26.
Zurück zum Zitat Zhilin, P.A.: Advanced Problems in Mechanics, vol. 1. Institute for Problems in Mechanical Engineering, St. Petersburg (2006).. ((In Russian)) Zhilin, P.A.: Advanced Problems in Mechanics, vol. 1. Institute for Problems in Mechanical Engineering, St. Petersburg (2006).. ((In Russian))
27.
Zurück zum Zitat Zhilin, P.A.: Advanced Problems in Mechanics, vol. 2. Institute for Problems in Mechanical Engineering, St. Petersburg (2006) Zhilin, P.A.: Advanced Problems in Mechanics, vol. 2. Institute for Problems in Mechanical Engineering, St. Petersburg (2006)
28.
Zurück zum Zitat Zhilin, P.A.: Rational Continuum Mechanics. Polytechnic University Publishing House, St. Petersburg (2012).. ((In Russian)) Zhilin, P.A.: Rational Continuum Mechanics. Polytechnic University Publishing House, St. Petersburg (2012).. ((In Russian))
29.
30.
Zurück zum Zitat Müller, W.H., Vilchevskaya, E.N., Weiss, W.: Micropolar theory with production of rotational inertia: a farewell to material description. Phys. Mesomech. 20(3), 250–262 (2017)CrossRef Müller, W.H., Vilchevskaya, E.N., Weiss, W.: Micropolar theory with production of rotational inertia: a farewell to material description. Phys. Mesomech. 20(3), 250–262 (2017)CrossRef
31.
Zurück zum Zitat Vilchevskaya, E.N.: On micropolar theory with inertia production. In: Altenbach, H., Öchsner, A. (eds.) State of the Art and Future Trends in Material Modeling, pp. 421–442. Springer, Berlin (2019)CrossRef Vilchevskaya, E.N.: On micropolar theory with inertia production. In: Altenbach, H., Öchsner, A. (eds.) State of the Art and Future Trends in Material Modeling, pp. 421–442. Springer, Berlin (2019)CrossRef
32.
Zurück zum Zitat Ivanova, E.A.: On a micropolar continuum approach to some problems of thermo- and electrodynamics. Acta Mech. 230, 1685–1715 (2019)MathSciNetMATHCrossRef Ivanova, E.A.: On a micropolar continuum approach to some problems of thermo- and electrodynamics. Acta Mech. 230, 1685–1715 (2019)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mech. 215, 261–286 (2010)MATHCrossRef Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mech. 215, 261–286 (2010)MATHCrossRef
34.
Zurück zum Zitat Ivanova, E.A.: Description of mechanism of thermal conduction and internal damping by means of two-component Cosserat continuum. Acta Mech. 225, 757–795 (2014)MathSciNetMATHCrossRef Ivanova, E.A.: Description of mechanism of thermal conduction and internal damping by means of two-component Cosserat continuum. Acta Mech. 225, 757–795 (2014)MathSciNetMATHCrossRef
35.
36.
Zurück zum Zitat Ivanova, E.A.: Description of nonlinear thermal effects by means of a two-component Cosserat continuum. Acta Mech. 228, 2299–2346 (2017)MathSciNetMATHCrossRef Ivanova, E.A.: Description of nonlinear thermal effects by means of a two-component Cosserat continuum. Acta Mech. 228, 2299–2346 (2017)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Walter, J.: Eulerian Front Tracking for solid dynamics. Los Alamos National Research Laboratory, United States (1999) Walter, J.: Eulerian Front Tracking for solid dynamics. Los Alamos National Research Laboratory, United States (1999)
38.
Zurück zum Zitat Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: Time derivatives in material and spatial description—What are the differences and why do they concern us? In: Naumenko, K., Aßmus, M. (eds.) Advanced Methods of Continuum Mechanics for Materials and Structures, pp. 3–28. Springer, Berlin (2016)CrossRef Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: Time derivatives in material and spatial description—What are the differences and why do they concern us? In: Naumenko, K., Aßmus, M. (eds.) Advanced Methods of Continuum Mechanics for Materials and Structures, pp. 3–28. Springer, Berlin (2016)CrossRef
39.
Zurück zum Zitat Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: A study of objective time derivatives in material and spatial description. In: Altenbach, H., Goldstein, R., Murashkin, E. (eds.) Mechanics for Materials and Technologies. Advanced Structured Materials 46, pp. 195–229. Springer, Cham (2017)CrossRef Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: A study of objective time derivatives in material and spatial description. In: Altenbach, H., Goldstein, R., Murashkin, E. (eds.) Mechanics for Materials and Technologies. Advanced Structured Materials 46, pp. 195–229. Springer, Cham (2017)CrossRef
40.
Zurück zum Zitat Trangenstein, J.: Numerical Solution of Hyperbolic Partial Differential Ecuations, pp. 432–450. Cambridge University Press, Cambridge (2007) Trangenstein, J.: Numerical Solution of Hyperbolic Partial Differential Ecuations, pp. 432–450. Cambridge University Press, Cambridge (2007)
41.
Zurück zum Zitat Versteeg, H.K., Malalasakera, W.: An introduction to Computational Fluid Mechanics, pp. 129–225. Pearson Education, New York (2007) Versteeg, H.K., Malalasakera, W.: An introduction to Computational Fluid Mechanics, pp. 129–225. Pearson Education, New York (2007)
42.
Zurück zum Zitat Machado D.: Solucion numerica de las ecuaciones de Navier Stokes utilizando metodos tipo VOF, Universidad Simon Bolivar, Venezuela, pp. 30-45 (2019) (in spanish) Machado D.: Solucion numerica de las ecuaciones de Navier Stokes utilizando metodos tipo VOF, Universidad Simon Bolivar, Venezuela, pp. 30-45 (2019) (in spanish)
43.
Zurück zum Zitat Kamrin, K., Rycroft, C., Nave, J.C.: Reference map technique for finite-strain elasticity and fluid–solid interaction. J. Mech. Phys. 60, 1952–1969 (2012)ADSMathSciNetCrossRef Kamrin, K., Rycroft, C., Nave, J.C.: Reference map technique for finite-strain elasticity and fluid–solid interaction. J. Mech. Phys. 60, 1952–1969 (2012)ADSMathSciNetCrossRef
44.
Zurück zum Zitat Kamrin, K., Mani, A., Jain, S.: A conservative and non dissipative Eulerian formulation for the simulation of soft solids in fluids. J. Comput. Phys. 1, 261–289 (2019)MathSciNetMATH Kamrin, K., Mani, A., Jain, S.: A conservative and non dissipative Eulerian formulation for the simulation of soft solids in fluids. J. Comput. Phys. 1, 261–289 (2019)MathSciNetMATH
45.
Zurück zum Zitat Tryggvasson, G., Prosperetti, A.: Computational Methods for multiphase flow, pp. 50–86. Cambridge University Press, Cambridge (2007) Tryggvasson, G., Prosperetti, A.: Computational Methods for multiphase flow, pp. 50–86. Cambridge University Press, Cambridge (2007)
46.
Zurück zum Zitat Tepole, A.: Growing skin: a computational model for skin expansion in reconstructive surgery. J. Mech. Phys. Solids 59, 2177–2190 (2011)ADSMathSciNetMATHCrossRef Tepole, A.: Growing skin: a computational model for skin expansion in reconstructive surgery. J. Mech. Phys. Solids 59, 2177–2190 (2011)ADSMathSciNetMATHCrossRef
47.
Metadaten
Titel
A new approach to solving the solid mechanics problems with matter supply
verfasst von
Elena A. Ivanova
Luis Eduardo Jatar Montaño
Publikationsdatum
04.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Continuum Mechanics and Thermodynamics / Ausgabe 4/2021
Print ISSN: 0935-1175
Elektronische ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-021-01014-2

Weitere Artikel der Ausgabe 4/2021

Continuum Mechanics and Thermodynamics 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.