Skip to main content
Erschienen in:

17.10.2023

A New Approach to the Analysis of Parametric Finite Element Approximations to Mean Curvature Flow

verfasst von: Genming Bai, Buyang Li

Erschienen in: Foundations of Computational Mathematics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Parametric finite element methods have achieved great success in approximating the evolution of surfaces under various different geometric flows, including mean curvature flow, Willmore flow, surface diffusion, and so on. However, the convergence of Dziuk’s parametric finite element method, as well as many other widely used parametric finite element methods for these geometric flows, remains open. In this article, we introduce a new approach and a corresponding new framework for the analysis of parametric finite element approximations to surface evolution under geometric flows, by estimating the projected distance from the numerically computed surface to the exact surface, rather than estimating the distance between particle trajectories of the two surfaces as in the currently available numerical analyses. The new framework can recover some hidden geometric structures in geometric flows, such as the full \(H^1\) parabolicity in mean curvature flow, which is used to prove the convergence of Dziuk’s parametric finite element method with finite elements of degree \(k \ge 3\) for surfaces in the three-dimensional space. The new framework introduced in this article also provides a foundational mathematical tool for analyzing other geometric flows and other parametric finite element methods with artificial tangential motions to improve the mesh quality.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat G. Bai and B. Li. Erratum: Convergence of Dziuk’s semidiscrete finite element method for mean curvature flow of closed surfaces with high-order finite elements. SIAM J. Numer. Anal., 61(3):1609–1612, 2023.MathSciNet G. Bai and B. Li. Erratum: Convergence of Dziuk’s semidiscrete finite element method for mean curvature flow of closed surfaces with high-order finite elements. SIAM J. Numer. Anal., 61(3):1609–1612, 2023.MathSciNet
2.
Zurück zum Zitat E. Bänsch, P. Morin, and R. H. Nochetto. A finite element method for surface diffusion: The parametric case. J. Comput. Phys., 203:321–343, 2005.MathSciNet E. Bänsch, P. Morin, and R. H. Nochetto. A finite element method for surface diffusion: The parametric case. J. Comput. Phys., 203:321–343, 2005.MathSciNet
3.
Zurück zum Zitat W. Bao, W. Jiang, Y. Wang, and Q. Zhao. A parametric finite element method for solid-state dewetting problems with anisotropic surface energies. J. Comput. Phys., 330:380–400, 2017.MathSciNet W. Bao, W. Jiang, Y. Wang, and Q. Zhao. A parametric finite element method for solid-state dewetting problems with anisotropic surface energies. J. Comput. Phys., 330:380–400, 2017.MathSciNet
4.
Zurück zum Zitat W. Bao, W. Jiang, and Q. Zhao. A parametric finite element method for solid-state dewetting problems in three dimensions. SIAM J. Sci. Comput., 42:B327–B352, 2020.MathSciNet W. Bao, W. Jiang, and Q. Zhao. A parametric finite element method for solid-state dewetting problems in three dimensions. SIAM J. Sci. Comput., 42:B327–B352, 2020.MathSciNet
5.
Zurück zum Zitat J. Barrett, K. Deckelnick, and R. Nürnberg. A finite element error analysis for axisymmetric mean curvature flow. IMA J. Numer. Anal., 41(3):1641–1667, 2021.MathSciNet J. Barrett, K. Deckelnick, and R. Nürnberg. A finite element error analysis for axisymmetric mean curvature flow. IMA J. Numer. Anal., 41(3):1641–1667, 2021.MathSciNet
6.
Zurück zum Zitat J. W. Barrett, K. Deckelnick, and V. Styles. Numerical analysis for a system coupling curve evolution to reaction diffusion on the curve. SIAM J. Numer. Anal., 55(2):1080–1100, 2017.MathSciNet J. W. Barrett, K. Deckelnick, and V. Styles. Numerical analysis for a system coupling curve evolution to reaction diffusion on the curve. SIAM J. Numer. Anal., 55(2):1080–1100, 2017.MathSciNet
7.
Zurück zum Zitat J. W. Barrett, H. Garcke, and R. Nürnberg. A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys., 222:441–467, 2007.MathSciNet J. W. Barrett, H. Garcke, and R. Nürnberg. A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys., 222:441–467, 2007.MathSciNet
8.
Zurück zum Zitat J. W. Barrett, H. Garcke, and R. Nürnberg. On the parametric finite element approximation of evolving hypersurfaces in \(\mathbb{R}^3\). J. Comput. Phys., 227:4281–4307, 2008.MathSciNet J. W. Barrett, H. Garcke, and R. Nürnberg. On the parametric finite element approximation of evolving hypersurfaces in \(\mathbb{R}^3\). J. Comput. Phys., 227:4281–4307, 2008.MathSciNet
9.
Zurück zum Zitat J. W. Barrett, H. Garcke, and R. Nürnberg. Parametric approximation of willmore flow and related geometric evolution equations. SIAM Journal on Scientific Computing, 31(1):225–253, 2008.MathSciNet J. W. Barrett, H. Garcke, and R. Nürnberg. Parametric approximation of willmore flow and related geometric evolution equations. SIAM Journal on Scientific Computing, 31(1):225–253, 2008.MathSciNet
10.
Zurück zum Zitat J. W. Barrett, H. Garcke, and R. Nürnberg. Parametric finite element approximations of curvature-driven interface evolutions. In Handbook of numerical analysis, volume 21, pages 275–423. Elsevier, 2020. J. W. Barrett, H. Garcke, and R. Nürnberg. Parametric finite element approximations of curvature-driven interface evolutions. In Handbook of numerical analysis, volume 21, pages 275–423. Elsevier, 2020.
11.
Zurück zum Zitat S. Bartels. A simple scheme for the approximation of the elastic flow of inextensible curves. IMA J. Numer. Anal., 33:1115–1125, 2013.MathSciNet S. Bartels. A simple scheme for the approximation of the elastic flow of inextensible curves. IMA J. Numer. Anal., 33:1115–1125, 2013.MathSciNet
12.
Zurück zum Zitat S. Bartels, R. Müller, and C. Ortner. Robust a priori and a posteriori error analysis for the approximation of Allen–Cahn and Ginzburg–Landau equations past topological changes. SIAM J. Numer. Anal., 49:110–134, 2011.MathSciNet S. Bartels, R. Müller, and C. Ortner. Robust a priori and a posteriori error analysis for the approximation of Allen–Cahn and Ginzburg–Landau equations past topological changes. SIAM J. Numer. Anal., 49:110–134, 2011.MathSciNet
13.
Zurück zum Zitat T. Binz and B. Kovács. A convergent finite element algorithm for generalized mean curvature flows of closed surfaces. IMA J. Numer. Anal., 42(3):2545–2588, 2021.MathSciNet T. Binz and B. Kovács. A convergent finite element algorithm for generalized mean curvature flows of closed surfaces. IMA J. Numer. Anal., 42(3):2545–2588, 2021.MathSciNet
14.
Zurück zum Zitat A. Bonito, R. H. Nochetto, and M. S. Pauletti. Parametric FEM for geometric biomembranes. J. Comput. Phys., 229:3171–3188, 2010.MathSciNet A. Bonito, R. H. Nochetto, and M. S. Pauletti. Parametric FEM for geometric biomembranes. J. Comput. Phys., 229:3171–3188, 2010.MathSciNet
15.
Zurück zum Zitat K. Deckelnick. Error bounds for a difference scheme approximating viscosity solutions of mean curvature flow. Interfaces Free Bound., 2:117–142, 2000.MathSciNet K. Deckelnick. Error bounds for a difference scheme approximating viscosity solutions of mean curvature flow. Interfaces Free Bound., 2:117–142, 2000.MathSciNet
16.
Zurück zum Zitat K. Deckelnick and G. Dziuk. Convergence of a finite element method for non-parametric mean curvature flow. Numer. Math., 72:197–222, 1995.MathSciNet K. Deckelnick and G. Dziuk. Convergence of a finite element method for non-parametric mean curvature flow. Numer. Math., 72:197–222, 1995.MathSciNet
17.
Zurück zum Zitat K. Deckelnick and G. Dziuk. On the approximation of the curve shortening flow. In Calculus of variations, applications and computations (Pont-à-Mousson, 1994), volume 326 of Pitman Res. Notes Math. Ser., pages 100–108. Longman Sci. Tech., Harlow, 1995. K. Deckelnick and G. Dziuk. On the approximation of the curve shortening flow. In Calculus of variations, applications and computations (Pont-à-Mousson, 1994), volume 326 of Pitman Res. Notes Math. Ser., pages 100–108. Longman Sci. Tech., Harlow, 1995.
18.
Zurück zum Zitat K. Deckelnick and G. Dziuk. Error analysis of a finite element method for the Willmore flow of graphs. Interfaces Free Bound., 8:21–46, 2006.MathSciNet K. Deckelnick and G. Dziuk. Error analysis of a finite element method for the Willmore flow of graphs. Interfaces Free Bound., 8:21–46, 2006.MathSciNet
19.
Zurück zum Zitat K. Deckelnick and G. Dziuk. Error analysis for the elastic flow of parametrized curves. Math. Comp., 78:645–671, 2009.MathSciNet K. Deckelnick and G. Dziuk. Error analysis for the elastic flow of parametrized curves. Math. Comp., 78:645–671, 2009.MathSciNet
20.
Zurück zum Zitat K. Deckelnick and R. Nürnberg. Error analysis for a finite difference scheme for axisymmetric mean curvature flow of genus-0 surfaces. SIAM J. Numer. Anal., 59(5):2698–2721, 2021.MathSciNet K. Deckelnick and R. Nürnberg. Error analysis for a finite difference scheme for axisymmetric mean curvature flow of genus-0 surfaces. SIAM J. Numer. Anal., 59(5):2698–2721, 2021.MathSciNet
21.
Zurück zum Zitat K. Deckelnick and V. Styles. Finite element error analysis for a system coupling surface evolution to diffusion on the surface. Interfaces Free Bound., 24:63–93, 2022.MathSciNet K. Deckelnick and V. Styles. Finite element error analysis for a system coupling surface evolution to diffusion on the surface. Interfaces Free Bound., 24:63–93, 2022.MathSciNet
22.
Zurück zum Zitat A. Demlow. Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal., 47(2):805–827, 2009.MathSciNet A. Demlow. Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal., 47(2):805–827, 2009.MathSciNet
23.
Zurück zum Zitat G. Dziuk. An algorithm for evolutionary surfaces. Numer. Math., 58:603–611, 1990.MathSciNet G. Dziuk. An algorithm for evolutionary surfaces. Numer. Math., 58:603–611, 1990.MathSciNet
24.
Zurück zum Zitat G. Dziuk. Convergence of a semi-discrete scheme for the curve shortening flow. Math. Models Methods Appl. Sci., 4:589–606, 1994.MathSciNet G. Dziuk. Convergence of a semi-discrete scheme for the curve shortening flow. Math. Models Methods Appl. Sci., 4:589–606, 1994.MathSciNet
25.
Zurück zum Zitat G. Dziuk. Computational parametric Willmore flow. Numer. Math., 111:55–80, 2008.MathSciNet G. Dziuk. Computational parametric Willmore flow. Numer. Math., 111:55–80, 2008.MathSciNet
26.
Zurück zum Zitat G. Dziuk and C. M. Elliott. Finite elements on evolving surfaces. IMA J. Numer. Anal., 27:262–292, 2007.MathSciNet G. Dziuk and C. M. Elliott. Finite elements on evolving surfaces. IMA J. Numer. Anal., 27:262–292, 2007.MathSciNet
27.
Zurück zum Zitat G. Dziuk and C. M. Elliott. A fully discrete evolving surface finite element method. SIAM J. Numer. Anal., 50:2677–2694, 2012.MathSciNet G. Dziuk and C. M. Elliott. A fully discrete evolving surface finite element method. SIAM J. Numer. Anal., 50:2677–2694, 2012.MathSciNet
28.
Zurück zum Zitat G. Dziuk, D. Kröner, and T. Müller. Scalar conservation laws on moving hypersurfaces. Interfaces Free Bound., 15(2):203–236, 2013.MathSciNet G. Dziuk, D. Kröner, and T. Müller. Scalar conservation laws on moving hypersurfaces. Interfaces Free Bound., 15(2):203–236, 2013.MathSciNet
29.
Zurück zum Zitat K. Ecker. Regularity theory for mean curvature flow. Springer, 2012. K. Ecker. Regularity theory for mean curvature flow. Springer, 2012.
30.
Zurück zum Zitat C. Elliott, H. Garcke, and B. Kovács. Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces. Numer. Math., 151:873–925, 2022.MathSciNet C. Elliott, H. Garcke, and B. Kovács. Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces. Numer. Math., 151:873–925, 2022.MathSciNet
31.
Zurück zum Zitat C. M. Elliott and H. Fritz. On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick. IMA J. Numer. Anal., 37:543–603, 2017.MathSciNet C. M. Elliott and H. Fritz. On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick. IMA J. Numer. Anal., 37:543–603, 2017.MathSciNet
32.
Zurück zum Zitat X. Feng and Y. Li. Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen–Cahn equation and the mean curvature flow. IMA J. Numer. Anal., 35:1622–1651, 2015.MathSciNet X. Feng and Y. Li. Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen–Cahn equation and the mean curvature flow. IMA J. Numer. Anal., 35:1622–1651, 2015.MathSciNet
33.
Zurück zum Zitat X. Feng and A. Prohl. Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math., 94:33–65, 2003.MathSciNet X. Feng and A. Prohl. Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math., 94:33–65, 2003.MathSciNet
34.
Zurück zum Zitat D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Springer, Berlin, Germany, 2001. D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Springer, Berlin, Germany, 2001.
35.
Zurück zum Zitat J. Hu and B. Li. Evolving finite element methods with an artificial tangential velocity for mean curvature flow and willmore flow. Numer. Math., 152:127–181, 2022.MathSciNet J. Hu and B. Li. Evolving finite element methods with an artificial tangential velocity for mean curvature flow and willmore flow. Numer. Math., 152:127–181, 2022.MathSciNet
36.
Zurück zum Zitat B. Kovács. High-order evolving surface finite element method for parabolic problems on evolving surfaces. IMA J. Numer. Anal., 38(1):430–459, 2018.MathSciNet B. Kovács. High-order evolving surface finite element method for parabolic problems on evolving surfaces. IMA J. Numer. Anal., 38(1):430–459, 2018.MathSciNet
37.
Zurück zum Zitat B. Kovács, B. Li, and C. Lubich. A convergent evolving finite element algorithm for mean curvature flow of closed surfaces. Numer. Math., 143:797–853, 2019.MathSciNet B. Kovács, B. Li, and C. Lubich. A convergent evolving finite element algorithm for mean curvature flow of closed surfaces. Numer. Math., 143:797–853, 2019.MathSciNet
38.
Zurück zum Zitat B. Kovács, B. Li, and C. Lubich. A convergent evolving finite element algorithm for Willmore flow of closed surfaces. Numer. Math., 149:595–643, 2021.MathSciNet B. Kovács, B. Li, and C. Lubich. A convergent evolving finite element algorithm for Willmore flow of closed surfaces. Numer. Math., 149:595–643, 2021.MathSciNet
39.
Zurück zum Zitat B. Kovács, B. Li, C. Lubich, and C. A. P. Guerra. Convergence of finite elements on an evolving surface driven by diffusion on the surface. Numer. Math., 137:643–689, 2017.MathSciNet B. Kovács, B. Li, C. Lubich, and C. A. P. Guerra. Convergence of finite elements on an evolving surface driven by diffusion on the surface. Numer. Math., 137:643–689, 2017.MathSciNet
40.
Zurück zum Zitat B. Li. Convergence of Dziuk’s linearly implicit parametric finite element method for curve shortening flow. SIAM J. Numer. Anal., 58:2315–2333, 2020.MathSciNet B. Li. Convergence of Dziuk’s linearly implicit parametric finite element method for curve shortening flow. SIAM J. Numer. Anal., 58:2315–2333, 2020.MathSciNet
41.
Zurück zum Zitat B. Li. Convergence of Dziuk’s semidiscrete finite element method for mean curvature flow of closed surfaces with high-order finite elements. SIAM J. Numer. Anal., 59:1592–1617, 2021.MathSciNet B. Li. Convergence of Dziuk’s semidiscrete finite element method for mean curvature flow of closed surfaces with high-order finite elements. SIAM J. Numer. Anal., 59:1592–1617, 2021.MathSciNet
42.
Zurück zum Zitat C. Mantegazza. Lecture Notes on Mean Curvature Flow. . Basel AG, 2012. C. Mantegazza. Lecture Notes on Mean Curvature Flow. . Basel AG, 2012.
43.
Zurück zum Zitat A. Mierswa. Error estimates for a finite difference approximation of mean curvature flow for surfaces of torus type, PhD Thesis, Otto-von-Guericke-Universität, Magdeburg, 2020. A. Mierswa. Error estimates for a finite difference approximation of mean curvature flow for surfaces of torus type, PhD Thesis, Otto-von-Guericke-Universität, Magdeburg, 2020.
44.
Zurück zum Zitat B. White. Evolution of curves and surfaces by mean curvature. Proceedings of the International Congress of Mathematicians, 1:525–538, 2002.MathSciNet B. White. Evolution of curves and surfaces by mean curvature. Proceedings of the International Congress of Mathematicians, 1:525–538, 2002.MathSciNet
45.
Zurück zum Zitat C. Ye and J. Cui. Convergence of Dziuk’s fully discrete linearly implicit scheme for curve shortening flow. SIAM J. Numer. Anal., 59:2823–2842, 2021.MathSciNet C. Ye and J. Cui. Convergence of Dziuk’s fully discrete linearly implicit scheme for curve shortening flow. SIAM J. Numer. Anal., 59:2823–2842, 2021.MathSciNet
46.
Zurück zum Zitat Q. Zhao, W. Jiang, and W. Bao. A parametric finite element method for solid-state dewetting problems in three dimensions. SIAM J. Sci. Comput., 42:B327–B352, 2020.MathSciNet Q. Zhao, W. Jiang, and W. Bao. A parametric finite element method for solid-state dewetting problems in three dimensions. SIAM J. Sci. Comput., 42:B327–B352, 2020.MathSciNet
Metadaten
Titel
A New Approach to the Analysis of Parametric Finite Element Approximations to Mean Curvature Flow
verfasst von
Genming Bai
Buyang Li
Publikationsdatum
17.10.2023
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 5/2024
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-023-09622-x