Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 1/2019

31.10.2018

A New Approach Toward Designing and Synthesizing the Microalloying Zn Biodegradable Alloys with Improved Mechanical Properties

verfasst von: Zhilin Liu

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Zinc (Zn) possesses great potential for application in biomedical implants owing to its acceptable levels of biodegradability and biocompatibility. Unfortunately, pure Zn exhibits undesirably low strength and ductility because of the coarsening grain structures, which restrict the biomedical applications of Zn biodegradable metals. Meanwhile, high levels of multiple alloying elements, such as Al, Ag, Mg, Mn, Fe, and Sr, may result in adverse effects that require further medical treatment. In the current study, a new approach toward the design and synthesis of microalloying Zn biodegradable metals with improved mechanical properties is proposed, which relies on the synergetic effects of both grain refiner and fast cooling. Combined with experimental validation, this approach is applied to the microalloying Zn-Mg biodegradable metals. Firstly, the metallurgical interdependence theory is used together with the crystallographic edge-to-edge matching model to predict a new efficient grain refiner for pure Zn biodegradable metals. Then, the predicted grain refiner is prepared and added into super-high-purity Zn (99.995 wt pct) to determine the refining efficiency. The average grain size of microalloying Zn-Mg biodegradable metals was significantly reduced by 88.07 pct. Meanwhile, only 0.1 wt pct Mg promoted a noticeable columnar-to-equiaxed transition in the microstructures. Further, another decrease of 7.14 pct for the equiaxed grain sizes was obtained through introducing the fast cooling during solidification, where small, uniform and equiaxed grain structures fully occurred. Moreover, the mechanical properties of the microalloying Zn-Mg biodegradable metals with and without grain refinement were comparatively investigated. Below the maximum solubility (Cm), a remarkable improvement of the mechanical properties was generated by grain refinement and solid solution. However, a three-dimensional “eutectic-skeleton” formed beyond Cm, which deteriorated the corresponding mechanical properties to some extent. Finally, the mechanisms, responsible for grain refinement and the associated mechanical properties, were interpreted in line with the experimental results and theoretical analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat [1] D. Vojtěch, J. Kubásek, J. Šerák, and P. Novák: Acta Biomater., 2011, vol.7, pp. 3515-22.CrossRef [1] D. Vojtěch, J. Kubásek, J. Šerák, and P. Novák: Acta Biomater., 2011, vol.7, pp. 3515-22.CrossRef
2.
Zurück zum Zitat [2] N.S. Murni, M.S. Dambatta, S.K. Yeapb, G.R.A. Froemming, and H. Hermawan: Mater. Sci. Eng. C 2015, vol. 49, pp. 560-6.CrossRef [2] N.S. Murni, M.S. Dambatta, S.K. Yeapb, G.R.A. Froemming, and H. Hermawan: Mater. Sci. Eng. C 2015, vol. 49, pp. 560-6.CrossRef
3.
Zurück zum Zitat [3] B. Zberg, P.J. Uggowitzer, and J.F. Löffler: Nature Mater., 2009, vol. 8, pp. 887-91.CrossRef [3] B. Zberg, P.J. Uggowitzer, and J.F. Löffler: Nature Mater., 2009, vol. 8, pp. 887-91.CrossRef
4.
Zurück zum Zitat [4] Y.F. Zheng, X.N. Gu, and F. Witte: Mater. Sci. Eng. R-Report 2014, vol. 77, pp. 1-34.CrossRef [4] Y.F. Zheng, X.N. Gu, and F. Witte: Mater. Sci. Eng. R-Report 2014, vol. 77, pp. 1-34.CrossRef
5.
Zurück zum Zitat [5] J.R. Davis: Handbook of materials for medical devices, Materials Park, OH: ASM International, 2003. [5] J.R. Davis: Handbook of materials for medical devices, Materials Park, OH: ASM International, 2003.
6.
Zurück zum Zitat [6] C. Xiao, L. Wang, Y. Ren, Sh. Sun, E. Zhang, C. Yan, Q. Liu, X. Sun, F. Shou, J. Duan, H. Wang, and G. Qin: J. Mater. Sci. Technol., 2018, vol. 34(9), pp. 1618-27.CrossRef [6] C. Xiao, L. Wang, Y. Ren, Sh. Sun, E. Zhang, C. Yan, Q. Liu, X. Sun, F. Shou, J. Duan, H. Wang, and G. Qin: J. Mater. Sci. Technol., 2018, vol. 34(9), pp. 1618-27.CrossRef
7.
Zurück zum Zitat [7] M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and C.V. Schnakenburg: Biomaterials, 2006, vol. 27, pp. 4955-62.CrossRef [7] M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and C.V. Schnakenburg: Biomaterials, 2006, vol. 27, pp. 4955-62.CrossRef
8.
Zurück zum Zitat [8] B. Liu and Y.F. Zheng: Acta Biomater., 2011, vol. 7, pp. 1407-20.CrossRef [8] B. Liu and Y.F. Zheng: Acta Biomater., 2011, vol. 7, pp. 1407-20.CrossRef
9.
Zurück zum Zitat [9] M. Sikora-Jasinska, E. Mostaed, A. Mostaed, R. Beanland, D. Mantovani, and M. Vedani: Mater. Sci. Eng. C, 2017, vol. 77, pp. 1170-81.CrossRef [9] M. Sikora-Jasinska, E. Mostaed, A. Mostaed, R. Beanland, D. Mantovani, and M. Vedani: Mater. Sci. Eng. C, 2017, vol. 77, pp. 1170-81.CrossRef
10.
Zurück zum Zitat [10] X. Liu, J. Sun, Y. Yang, F. Zhou, Z. Pu, L. Li, and Y. Zheng: Mater. Lett., 2016, vol. 162, pp. 242-5.CrossRef [10] X. Liu, J. Sun, Y. Yang, F. Zhou, Z. Pu, L. Li, and Y. Zheng: Mater. Lett., 2016, vol. 162, pp. 242-5.CrossRef
11.
Zurück zum Zitat [11] E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A.G. Demir, B. Previtali, D. Mantovani, R. Beanland, and M. Vedani: J. Mech. Behav. Biomed. Mater., 2016, vol. 60, pp. 581-02.CrossRef [11] E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A.G. Demir, B. Previtali, D. Mantovani, R. Beanland, and M. Vedani: J. Mech. Behav. Biomed. Mater., 2016, vol. 60, pp. 581-02.CrossRef
12.
Zurück zum Zitat [12] Y. Liu, Z. Yin, Y. Liu, C. Geng, X. Chen, J. Xu, and J. Peng: Int. J. Electrochem. Sci., 2018, vol. 13, pp. 1640-55.CrossRef [12] Y. Liu, Z. Yin, Y. Liu, C. Geng, X. Chen, J. Xu, and J. Peng: Int. J. Electrochem. Sci., 2018, vol. 13, pp. 1640-55.CrossRef
13.
Zurück zum Zitat [13] P.K. Bowen, J. Drelich, and J. Goldman: Adv. Mater., 2013, vol. 25, pp. 2577-82.CrossRef [13] P.K. Bowen, J. Drelich, and J. Goldman: Adv. Mater., 2013, vol. 25, pp. 2577-82.CrossRef
14.
Zurück zum Zitat L. Rink: Zinc in Human Health, Ios Press, 2011. L. Rink: Zinc in Human Health, Ios Press, 2011.
15.
Zurück zum Zitat [15] A. Green and J. Wesemael: Die Cast. Eng., 2009, vol. 03, pp. 56-8. [15] A. Green and J. Wesemael: Die Cast. Eng., 2009, vol. 03, pp. 56-8.
16.
17.
Zurück zum Zitat [17] X. Liu, J. Sun, F. Zhou, Y. Yang, R. Chang, K. Qiu, Z. Pu, L. Li, and Y. Zheng: Mater. Des., 2016, vol. 94, pp. 95-104.CrossRef [17] X. Liu, J. Sun, F. Zhou, Y. Yang, R. Chang, K. Qiu, Z. Pu, L. Li, and Y. Zheng: Mater. Des., 2016, vol. 94, pp. 95-104.CrossRef
18.
Zurück zum Zitat [18] Z. Tang, H. Huang, J. Niu, L. Zhang, H. Zhang, J. Pei, J. Tan, and G. Yuan: Mater. Des., 2017, vol. 117, pp. 84-94.CrossRef [18] Z. Tang, H. Huang, J. Niu, L. Zhang, H. Zhang, J. Pei, J. Tan, and G. Yuan: Mater. Des., 2017, vol. 117, pp. 84-94.CrossRef
19.
Zurück zum Zitat [19] H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu, and X. Wang: Mater. Des., 2015, vol. 83, pp. 95-102.CrossRef [19] H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu, and X. Wang: Mater. Des., 2015, vol. 83, pp. 95-102.CrossRef
20.
Zurück zum Zitat [20] Z.Z. Shi, J. Yu, and X.F. Liu: Mater. Des., 2018, vol. 144, pp. 343-52.CrossRef [20] Z.Z. Shi, J. Yu, and X.F. Liu: Mater. Des., 2018, vol. 144, pp. 343-52.CrossRef
21.
Zurück zum Zitat [22] A. Kafri, S. Ovadia, J. Goldman, J. Drelich, and E. Aghion: Metals, 2018, vol. 8 153.CrossRef [22] A. Kafri, S. Ovadia, J. Goldman, J. Drelich, and E. Aghion: Metals, 2018, vol. 8 153.CrossRef
22.
Zurück zum Zitat [23] Z.L. Liu, D. Qiu, F. Wang, J.A. Taylor, and M.X. Zhang: Acta Mater., 2014, vol. 79, pp. 315-26.CrossRef [23] Z.L. Liu, D. Qiu, F. Wang, J.A. Taylor, and M.X. Zhang: Acta Mater., 2014, vol. 79, pp. 315-26.CrossRef
23.
Zurück zum Zitat [24] D.H. StJohn, M. Qian, M.A. Easton, and P. Cao: Acta Mater., 2011, vol. 59, pp. 4907-21.CrossRef [24] D.H. StJohn, M. Qian, M.A. Easton, and P. Cao: Acta Mater., 2011, vol. 59, pp. 4907-21.CrossRef
24.
Zurück zum Zitat S.E. Offerman, N.H. van Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen. L. Margulies, H.F. Poulsen, M.T. Rekveldt, and S. van der Zwaag: Science, 2002, vol. 298, pp. 1003-5.CrossRef S.E. Offerman, N.H. van Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen. L. Margulies, H.F. Poulsen, M.T. Rekveldt, and S. van der Zwaag: Science, 2002, vol. 298, pp. 1003-5.CrossRef
25.
Zurück zum Zitat [26] D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase transformation in metals and alloys, Taylor & Francis, London, 2009. [26] D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase transformation in metals and alloys, Taylor & Francis, London, 2009.
26.
Zurück zum Zitat [27] F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, M.A. Easton, and M.X. Zhang: Acta Mater., 2013, vol. 61, pp. 360-70.CrossRef [27] F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, M.A. Easton, and M.X. Zhang: Acta Mater., 2013, vol. 61, pp. 360-70.CrossRef
27.
Zurück zum Zitat [28] Y. Ali, D. Qiu, B. Jiang, F. Pan, and M.X. Zhang: J. Alloys Compd., 2015, vol. 619, pp. 639-51.CrossRef [28] Y. Ali, D. Qiu, B. Jiang, F. Pan, and M.X. Zhang: J. Alloys Compd., 2015, vol. 619, pp. 639-51.CrossRef
28.
Zurück zum Zitat [29] M.J. Bermingham, S.D. McDonald, M.S. Dargusch, and D.H. StJohn: Scripta Mater., 2008, vol. 58, pp. 1050-3.CrossRef [29] M.J. Bermingham, S.D. McDonald, M.S. Dargusch, and D.H. StJohn: Scripta Mater., 2008, vol. 58, pp. 1050-3.CrossRef
29.
Zurück zum Zitat [30] W.J. Jackson: Iron Steel, 1972, vol. 45, pp. 163-72. [30] W.J. Jackson: Iron Steel, 1972, vol. 45, pp. 163-72.
30.
Zurück zum Zitat [31] M.J. Balart, J.B. Patel, F. Gao, and Z. Fan: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4988-5011.CrossRef [31] M.J. Balart, J.B. Patel, F. Gao, and Z. Fan: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4988-5011.CrossRef
31.
Zurück zum Zitat [32] M.X. Zhang, P.M. Kelly, M.A. Easton, and J.A. Taylor: Acta Mater., 2005, vol. 53, pp. 1427-38.CrossRef [32] M.X. Zhang, P.M. Kelly, M.A. Easton, and J.A. Taylor: Acta Mater., 2005, vol. 53, pp. 1427-38.CrossRef
32.
Zurück zum Zitat [33] M. Easton and D. StJohn: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1911-20.CrossRef [33] M. Easton and D. StJohn: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1911-20.CrossRef
34.
Zurück zum Zitat [35] D. Qiu, M.X. Zhang, J.A. Taylor, and P.M. Kelly: Acta Mater., 2009, vol. 57, pp. 3052-9.CrossRef [35] D. Qiu, M.X. Zhang, J.A. Taylor, and P.M. Kelly: Acta Mater., 2009, vol. 57, pp. 3052-9.CrossRef
35.
Zurück zum Zitat [36] F. Wang, D. Qiu, Z.L. Liu, J.A. Taylor, M.A. Easton, and M.X. Zhang: Acta Mater., 2013, vol. 61, pp. 5636-45.CrossRef [36] F. Wang, D. Qiu, Z.L. Liu, J.A. Taylor, M.A. Easton, and M.X. Zhang: Acta Mater., 2013, vol. 61, pp. 5636-45.CrossRef
36.
Zurück zum Zitat [37] D. Qiu, M.X. Zhang, and P.M. Kelly: Scripta Mater., 2009, vol. 61, pp. 312-5.CrossRef [37] D. Qiu, M.X. Zhang, and P.M. Kelly: Scripta Mater., 2009, vol. 61, pp. 312-5.CrossRef
37.
Zurück zum Zitat [38] Y. Zeng, B. Jiang, M. Zhang, H. Yin, R. Li, and F. Pan: Intermetallics, 2014, vol. 45, pp. 18-23.CrossRef [38] Y. Zeng, B. Jiang, M. Zhang, H. Yin, R. Li, and F. Pan: Intermetallics, 2014, vol. 45, pp. 18-23.CrossRef
38.
Zurück zum Zitat [39] M. Li, J.M. Li, D. Qiu, Q. Zhang, G. Wang, and M.X. Zhang: Philos. Mag., 2016, vol. 96, pp. 1556-78.CrossRef [39] M. Li, J.M. Li, D. Qiu, Q. Zhang, G. Wang, and M.X. Zhang: Philos. Mag., 2016, vol. 96, pp. 1556-78.CrossRef
39.
Zurück zum Zitat [40] H. Baker: Alloy Phase Diagrams, ASM Handbook, Vol. 3, Materials Park, OH: ASM International, 1992. [40] H. Baker: Alloy Phase Diagrams, ASM Handbook, Vol. 3, Materials Park, OH: ASM International, 1992.
40.
Zurück zum Zitat G. Hercz, D.L. Andress, H.G. Nebeker, J.H. Shinaberger, D.J. Sherrard, and J.W. Coburn: Am. J. Kidney Dis., 1988, vol. 11(1), pp. 70-5.CrossRef G. Hercz, D.L. Andress, H.G. Nebeker, J.H. Shinaberger, D.J. Sherrard, and J.W. Coburn: Am. J. Kidney Dis., 1988, vol. 11(1), pp. 70-5.CrossRef
41.
Zurück zum Zitat [42] J. Kubásek, D. Vojtěch, E. Jablonská, I. Pospíšilová, J. Lipov, and T. Ruml: Mater. Sci. Eng. C, 2016, vol. 58, pp. 24-35.CrossRef [42] J. Kubásek, D. Vojtěch, E. Jablonská, I. Pospíšilová, J. Lipov, and T. Ruml: Mater. Sci. Eng. C, 2016, vol. 58, pp. 24-35.CrossRef
42.
Zurück zum Zitat [43] Z.L. Liu, R.Q. Li, R.P. Jiang, X.Q. Li, and M.X. Zhang: J. Alloys Compd., 2016, vol. 687, pp. 885-92.CrossRef [43] Z.L. Liu, R.Q. Li, R.P. Jiang, X.Q. Li, and M.X. Zhang: J. Alloys Compd., 2016, vol. 687, pp. 885-92.CrossRef
43.
Zurück zum Zitat K. Törne, F.A. Khan, A. Örnberg, and J. Weissenrieder: Surf. Innovations, 2018, vol. 6(1-2), pp. 81-92. K. Törne, F.A. Khan, A. Örnberg, and J. Weissenrieder: Surf. Innovations, 2018, vol. 6(1-2), pp. 81-92.
44.
Zurück zum Zitat [45] Z.L. Liu, D. Qiu, F. Wang, J.A. Taylor, and M.X. Zhang: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 830-41.CrossRef [45] Z.L. Liu, D. Qiu, F. Wang, J.A. Taylor, and M.X. Zhang: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 830-41.CrossRef
45.
Zurück zum Zitat [46] C.H. Cáceres and D.M. Rovera: J. Light Met., 2001, vol. 1, pp. 151-6.CrossRef [46] C.H. Cáceres and D.M. Rovera: J. Light Met., 2001, vol. 1, pp. 151-6.CrossRef
46.
Zurück zum Zitat [47] B. Zhang, A.V. Nagasekhar, X. Tao, Y. Ouyang, C.H. Cáceres, and M. Easton: Mater. Sci. Eng. A, 2014, vol. 599, pp. 204-11.CrossRef [47] B. Zhang, A.V. Nagasekhar, X. Tao, Y. Ouyang, C.H. Cáceres, and M. Easton: Mater. Sci. Eng. A, 2014, vol. 599, pp. 204-11.CrossRef
47.
Zurück zum Zitat [48] Z.L. Liu, D. Qiu, F. Wang, J.A. Taylor, and M.X. Zhang: J. Appl. Cryst., 2015, vol. 48, pp. 890-900.CrossRef [48] Z.L. Liu, D. Qiu, F. Wang, J.A. Taylor, and M.X. Zhang: J. Appl. Cryst., 2015, vol. 48, pp. 890-900.CrossRef
Metadaten
Titel
A New Approach Toward Designing and Synthesizing the Microalloying Zn Biodegradable Alloys with Improved Mechanical Properties
verfasst von
Zhilin Liu
Publikationsdatum
31.10.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 1/2019
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4978-4

Weitere Artikel der Ausgabe 1/2019

Metallurgical and Materials Transactions A 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.