Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2016

13.10.2016

A New Constitutive Model for the High-Temperature Flow Behavior of 95CrMo Steel

verfasst von: Bao-Sheng Xie, Qing-Wu Cai, Yu Wei, Li-Xiong Xu, Ning Zhen

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2016

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The compressive deformation behavior of 95CrMo steel, one of the worldwide used hollow steels, was investigated on a Gleeble-3500 thermo-simulation machine within temperature range of 1073-1323 K and strain rate range of 0.1-10 s−1. Considering the influence of work-hardening, dynamic recovery and dynamic recrystallization, a new constitutive model for high-temperature flow stress was established in this paper. The calculated values predicted by the new constitutive model lie fairly close to the experimental values with a correlation coefficient (R) of generally above 0.99 and an average absolute relative error of 3.00%, proving a good predictability of the new constitutive model. Also, a modified Sellars-Tegart-Garofalo model (STG model) was introduced to verify the precision of the new constitutive model. Compared to the modified STG model, the new constitutive model has a higher accuracy, which implies it is a reliable tool for predicting flow stress at high temperatures not only under equilibrium state, but also under transient deformation conditions. Besides, the new constitutive model was proved still viable in the initial stage of plastic deformation where plastic strain is lower than 0.05.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. Yin, L. Hua, H.J. Mao, and X.H. Han, Constitutive Modeling for Flow Behavior of GCr15 Steel Under Hot Compression Experiments, Mater. Des., 2013, 43, p 393–401CrossRef F. Yin, L. Hua, H.J. Mao, and X.H. Han, Constitutive Modeling for Flow Behavior of GCr15 Steel Under Hot Compression Experiments, Mater. Des., 2013, 43, p 393–401CrossRef
2.
Zurück zum Zitat T. Yan, E.L. Yu, and Y.Q. Zhao, Constitutive Modeling for Flow Stress of 55SiMnMo Bainite Steel at Hot Working Conditions, Mater. Des., 2013, 50, p 574–580CrossRef T. Yan, E.L. Yu, and Y.Q. Zhao, Constitutive Modeling for Flow Stress of 55SiMnMo Bainite Steel at Hot Working Conditions, Mater. Des., 2013, 50, p 574–580CrossRef
3.
Zurück zum Zitat K.P. Rao, Y.K.D.V. Prasad, and E.B. Hawbolt, Hot Deformation Studies on a Low-Carbon Steel: Part 2—An Algorithm for the Flow Stress Determination under Varying Process Conditions, J. Mater. Process. Technol., 1996, 56, p 908–917CrossRef K.P. Rao, Y.K.D.V. Prasad, and E.B. Hawbolt, Hot Deformation Studies on a Low-Carbon Steel: Part 2—An Algorithm for the Flow Stress Determination under Varying Process Conditions, J. Mater. Process. Technol., 1996, 56, p 908–917CrossRef
4.
Zurück zum Zitat H.J. McQueen, S. Yue, N.D. Ryan, and E. Fry, Hot Working Characteristics of Steels in Austenitic State, J. Mater. Process. Tech., 1995, 53, p 293–310CrossRef H.J. McQueen, S. Yue, N.D. Ryan, and E. Fry, Hot Working Characteristics of Steels in Austenitic State, J. Mater. Process. Tech., 1995, 53, p 293–310CrossRef
5.
Zurück zum Zitat M.P. Phaniraj and A.K. Lahiri, The Applicability of Neural Network Model to Predict Flow Stress for Carbon Steels, J. Mater. Process. Technol., 2003, 141, p 219–227CrossRef M.P. Phaniraj and A.K. Lahiri, The Applicability of Neural Network Model to Predict Flow Stress for Carbon Steels, J. Mater. Process. Technol., 2003, 141, p 219–227CrossRef
6.
Zurück zum Zitat E.S. Puchi-Cabrera, J.D. Guérin, M. Dubar, M.H. Staia, J. Lesage, and D. Chicot, Constitutive Description of Fe–Mn23–C0.6 Steel Deformed Under Hot-Working Conditions, Int. J. Mech. Sci., 2015, 99, p 143–153CrossRef E.S. Puchi-Cabrera, J.D. Guérin, M. Dubar, M.H. Staia, J. Lesage, and D. Chicot, Constitutive Description of Fe–Mn23–C0.6 Steel Deformed Under Hot-Working Conditions, Int. J. Mech. Sci., 2015, 99, p 143–153CrossRef
7.
Zurück zum Zitat E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Thermostatistical Modelling of Hot Deformation in FCC Metals, Int. J. Plast, 2013, 47, p 202–221CrossRef E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Thermostatistical Modelling of Hot Deformation in FCC Metals, Int. J. Plast, 2013, 47, p 202–221CrossRef
8.
Zurück zum Zitat J.P. Sah, G. Richardson, and C.M. Sellars, Recrystallization During Hot Deformation of Nickel, J. Aust. Inst. Met., 1969, 14, p 292–297 J.P. Sah, G. Richardson, and C.M. Sellars, Recrystallization During Hot Deformation of Nickel, J. Aust. Inst. Met., 1969, 14, p 292–297
9.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate, Mech. Res. Commun., 2008, 35, p 142–150CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate, Mech. Res. Commun., 2008, 35, p 142–150CrossRef
10.
Zurück zum Zitat F.A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Constitutive Analysis of Wrought Magnesium Alloy Mg–Al4–Zn1, Scripta Mater., 2007, 57, p 759–762CrossRef F.A. Slooff, J. Zhou, J. Duszczyk, and L. Katgerman, Constitutive Analysis of Wrought Magnesium Alloy Mg–Al4–Zn1, Scripta Mater., 2007, 57, p 759–762CrossRef
11.
Zurück zum Zitat Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42, p 470–477CrossRef Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42, p 470–477CrossRef
12.
Zurück zum Zitat W. Yu, L.X. Xu, Y. Zhang, and E.T. Dong, Constitutive Equation for High Temperature Flow Stress of 95CrMo Steel, Trans. Mater. Heat Treat., 2016, 10, p 261–267 W. Yu, L.X. Xu, Y. Zhang, and E.T. Dong, Constitutive Equation for High Temperature Flow Stress of 95CrMo Steel, Trans. Mater. Heat Treat., 2016, 10, p 261–267
13.
Zurück zum Zitat E.S. Puchi-Cabrera, M.H. Staia, J.D. Guérin, J. Lesage, M. Dubar, and D. Chicot, Analysis of the Work-hardening Behavior of C-Mn Steels Deformed Under Hot-Working Conditions, Int. J. Plast, 2013, 51, p 145–160CrossRef E.S. Puchi-Cabrera, M.H. Staia, J.D. Guérin, J. Lesage, M. Dubar, and D. Chicot, Analysis of the Work-hardening Behavior of C-Mn Steels Deformed Under Hot-Working Conditions, Int. J. Plast, 2013, 51, p 145–160CrossRef
14.
Zurück zum Zitat D.L. Hong, T.H. Gu, and S.G. Xu, Drill Tool and Drill Steel, Metal. Industry Press, Beijing, 2000, p 121–134 D.L. Hong, T.H. Gu, and S.G. Xu, Drill Tool and Drill Steel, Metal. Industry Press, Beijing, 2000, p 121–134
15.
Zurück zum Zitat Z.S. Wang, W. Yu, J.Z. Xiong, W.L. Tang, J.J. Yu, and J.Z. Zhang, Researches on Dynamic and Static Transformations of 95CrMo Drill Steel, J. Iron Steel Res., 2009, 159, p 22–25 Z.S. Wang, W. Yu, J.Z. Xiong, W.L. Tang, J.J. Yu, and J.Z. Zhang, Researches on Dynamic and Static Transformations of 95CrMo Drill Steel, J. Iron Steel Res., 2009, 159, p 22–25
16.
Zurück zum Zitat N.Q. Peng, G.B. Tang, J. Yao, and Z.D. Liu, Hot Deformation Behavior of GCr15 Steel, J. Iron. Steel Res. Int., 2013, 20, p 50–56CrossRef N.Q. Peng, G.B. Tang, J. Yao, and Z.D. Liu, Hot Deformation Behavior of GCr15 Steel, J. Iron. Steel Res. Int., 2013, 20, p 50–56CrossRef
17.
Zurück zum Zitat J.G. Zhang, D.S. Sun, H.S. Shi, and H.B. Xu, Microstructure and Continuous Cooling Transformation Thermograms of Spray Formed GCr15 Steel, Mater. Sci. Eng., A, 2002, 326, p 20–25CrossRef J.G. Zhang, D.S. Sun, H.S. Shi, and H.B. Xu, Microstructure and Continuous Cooling Transformation Thermograms of Spray Formed GCr15 Steel, Mater. Sci. Eng., A, 2002, 326, p 20–25CrossRef
18.
Zurück zum Zitat H. Chen, Heat Treatment Process of the 95CrMo Conical Drill Rod, Mod. Mach., 2014, 01, p 75–78 H. Chen, Heat Treatment Process of the 95CrMo Conical Drill Rod, Mod. Mach., 2014, 01, p 75–78
19.
Zurück zum Zitat Y.Q. Song, Z.P. Guan, P.K. Ma, and J.W. Song, Theoretical and Experimental Standardization of Strain Hardening Index in Tensile Deformation, Acta Mater. Sinica, 2006, 42, p 673–680 Y.Q. Song, Z.P. Guan, P.K. Ma, and J.W. Song, Theoretical and Experimental Standardization of Strain Hardening Index in Tensile Deformation, Acta Mater. Sinica, 2006, 42, p 673–680
20.
Zurück zum Zitat D. Samantaray, S. Mandal, C. Phaniraj, and A.K. Bhaduri, Flow Behavior and Microstructural Evolution During Hot Deformation of AISI, Type 316 L(N) Austenitic Stainless Steel, Mater. Des., 2011, 32, p 2797–2802CrossRef D. Samantaray, S. Mandal, C. Phaniraj, and A.K. Bhaduri, Flow Behavior and Microstructural Evolution During Hot Deformation of AISI, Type 316 L(N) Austenitic Stainless Steel, Mater. Des., 2011, 32, p 2797–2802CrossRef
21.
Zurück zum Zitat C. Zener and J.H. Hollomon, Problems in Non-Elastic Deformation of Metals, J. Appl. Phys., 1944, 15, p 22–27CrossRef C. Zener and J.H. Hollomon, Problems in Non-Elastic Deformation of Metals, J. Appl. Phys., 1944, 15, p 22–27CrossRef
22.
Zurück zum Zitat S.A. Krishnan, C. Phaniraj, C. Ravishankar, A.K. Bhaduri, and P.V. Sivaprasad, Prediction of High Temperature Flow Stress in 9Cr–1Mo Ferritic Steel during Hot Compression, Int. J. Pres. Ves. Pip., 2011, 88, p 501–506CrossRef S.A. Krishnan, C. Phaniraj, C. Ravishankar, A.K. Bhaduri, and P.V. Sivaprasad, Prediction of High Temperature Flow Stress in 9Cr–1Mo Ferritic Steel during Hot Compression, Int. J. Pres. Ves. Pip., 2011, 88, p 501–506CrossRef
23.
Zurück zum Zitat D.W. Suh, J.Y. Cho, O.K. Hwan, and H.C. Lee, Evaluation of Dislocation Density from the Flow Curves of Hot Deformed Austenite, ISIJ Int., 2002, 42, p 564–566CrossRef D.W. Suh, J.Y. Cho, O.K. Hwan, and H.C. Lee, Evaluation of Dislocation Density from the Flow Curves of Hot Deformed Austenite, ISIJ Int., 2002, 42, p 564–566CrossRef
24.
Zurück zum Zitat A. Yoshie, T. Fujita, M. Fujioka, K. Okamota, and H. Morikawa, Formulation of Flow Stress of Nb Added Steels by Considering Work-hardening and Dynamic Recovery, ISIJ Int., 1996, 36, p 467–473CrossRef A. Yoshie, T. Fujita, M. Fujioka, K. Okamota, and H. Morikawa, Formulation of Flow Stress of Nb Added Steels by Considering Work-hardening and Dynamic Recovery, ISIJ Int., 1996, 36, p 467–473CrossRef
25.
Zurück zum Zitat F. Yin, L. Hua, H.J. Mao, X.H. Han, D.S. Qian, and R. Zhang, Microstructural Modeling and Simulation for GCr15 Steel during Elevated Temperature Deformation, Mater. Des., 2014, 55, p 560–573CrossRef F. Yin, L. Hua, H.J. Mao, X.H. Han, D.S. Qian, and R. Zhang, Microstructural Modeling and Simulation for GCr15 Steel during Elevated Temperature Deformation, Mater. Des., 2014, 55, p 560–573CrossRef
26.
Zurück zum Zitat C.X. Yue, L.W. Zhang, S.L. Liao, J.B. Pei, H.J. Gao, Y.W. Jia, and X.J. Lian, Research on the Dynamic Recrystallization Behavior of GCr15 Steel, Mater. Sci. Eng., A, 2014, 339, p 560–573 C.X. Yue, L.W. Zhang, S.L. Liao, J.B. Pei, H.J. Gao, Y.W. Jia, and X.J. Lian, Research on the Dynamic Recrystallization Behavior of GCr15 Steel, Mater. Sci. Eng., A, 2014, 339, p 560–573
27.
Zurück zum Zitat B.S. Xie, Q.W. Cai, W. Yu, J.M. Cao, and Y.F. Yang, Effect of Tempering Temperature on Resistance to Deformation Behavior for Low Carbon Bainitic YP960 Steels, Mater. Sci. Eng., A, 2014, 618, p 586–595CrossRef B.S. Xie, Q.W. Cai, W. Yu, J.M. Cao, and Y.F. Yang, Effect of Tempering Temperature on Resistance to Deformation Behavior for Low Carbon Bainitic YP960 Steels, Mater. Sci. Eng., A, 2014, 618, p 586–595CrossRef
Metadaten
Titel
A New Constitutive Model for the High-Temperature Flow Behavior of 95CrMo Steel
verfasst von
Bao-Sheng Xie
Qing-Wu Cai
Yu Wei
Li-Xiong Xu
Ning Zhen
Publikationsdatum
13.10.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2388-6

Weitere Artikel der Ausgabe 12/2016

Journal of Materials Engineering and Performance 12/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.