Skip to main content
Erschienen in:

05.08.2023

A New Defect Diameter Prediction using Heart Sound and Possibility to Implement as IoT Healthcare

verfasst von: Aripriharta, Gwo-Jiun Horng

Erschienen in: Mobile Networks and Applications | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Der Artikel beschreibt eine neue Methode zur Vorhersage der Größe angeborener Herzfehler (KHK) anhand von Herzschallsignalen. Es stellt das Modell Average Distance Scattered Atms of Eigenvalues (ADSAE) vor, das Merkmale aus Herztönen extrahiert, um Defektdurchmesser abzuschätzen. Die Methode umfasst die Segmentierung mit EKG-Referenzen, Autokorrelation und Kreuzkorrelation von Herzschallsignalen. Das ADSAE-Modell berechnet den euklidischen Abstand zwischen Atomen und dem Schwerpunkt, um die Größe der Defekte vorherzusagen. Die vorgeschlagene Methode wird mit einem Datensatz validiert und mit anderen Algorithmen verglichen, was Potenzial für Anwendungen im IoT-Gesundheitswesen aufzeigt. Der Artikel untersucht auch die zukünftigen Richtungen dieser Forschung und hebt die Bedeutung der Herzschallanalyse bei der Diagnose von KHK hervor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Jain PK, Tiwari AK (2014) Heart monitoring systems—A review. J Comput Biomed 54:1–13 Jain PK, Tiwari AK (2014) Heart monitoring systems—A review. J Comput Biomed 54:1–13
2.
Zurück zum Zitat Patidar S, Pachori RB, Garg N (2015) Automatic diagnosis of septal defects based on tunable-Q wavelet transform of cardiac sound signals. Expert Syst App 42:3315–3326CrossRef Patidar S, Pachori RB, Garg N (2015) Automatic diagnosis of septal defects based on tunable-Q wavelet transform of cardiac sound signals. Expert Syst App 42:3315–3326CrossRef
3.
Zurück zum Zitat Spanò E, Pascoli SD, Iannaccone G (2016) Low-power wearable ecg monitoring system for multiple-patient remote monitoring. IEEE Sens J 16:5452–5462CrossRef Spanò E, Pascoli SD, Iannaccone G (2016) Low-power wearable ecg monitoring system for multiple-patient remote monitoring. IEEE Sens J 16:5452–5462CrossRef
4.
Zurück zum Zitat Botta A, de Donato W, Persico V, Pescapé A (2016) Integration of cloud computing and internet of things: A survey. Future Gener Comput Syst 56:684–700CrossRef Botta A, de Donato W, Persico V, Pescapé A (2016) Integration of cloud computing and internet of things: A survey. Future Gener Comput Syst 56:684–700CrossRef
5.
Zurück zum Zitat Catarinucci L, de Donno D, Mainetti L, Palano L, Patrono L, Stefanizzi ML, Tarricone L (2015) An IoT-Aware Architecture for Smart Healthcare Systems. IEEE Internet Things J 2:515–526CrossRef Catarinucci L, de Donno D, Mainetti L, Palano L, Patrono L, Stefanizzi ML, Tarricone L (2015) An IoT-Aware Architecture for Smart Healthcare Systems. IEEE Internet Things J 2:515–526CrossRef
7.
Zurück zum Zitat Wang X et al (2021) SOSPCNN: structurally optimized stochastic pooling convolutional neural network for tetralogy of Fallot recognition. BMC Med Inf Decis Mak 21(1) Wang X et al (2021) SOSPCNN: structurally optimized stochastic pooling convolutional neural network for tetralogy of Fallot recognition. BMC Med Inf Decis Mak 21(1)
8.
Zurück zum Zitat Kovacs F, Horváth C, Balogh Á, Hosszú G (2011) Extended noninvasive fetal monitoring by detailed analysis of data measured with phonocardiography. IEEE Trans Biomed Eng 58:64–70CrossRef Kovacs F, Horváth C, Balogh Á, Hosszú G (2011) Extended noninvasive fetal monitoring by detailed analysis of data measured with phonocardiography. IEEE Trans Biomed Eng 58:64–70CrossRef
9.
Zurück zum Zitat Zheng Y, Guo X, Qin J, Xiao S (2015) Computer-assisted diagnosis for chronic heart failure by the analysis of their cardiac reserve and heart sound characteristics. Comput Methods Programs Biomed 122:372–383CrossRef Zheng Y, Guo X, Qin J, Xiao S (2015) Computer-assisted diagnosis for chronic heart failure by the analysis of their cardiac reserve and heart sound characteristics. Comput Methods Programs Biomed 122:372–383CrossRef
10.
Zurück zum Zitat Choi S, Shin Y, Park HK (2011) Selection of wavelet packet measures for insufficiency murmur identification. Expert Syst App 38:4264–4271CrossRef Choi S, Shin Y, Park HK (2011) Selection of wavelet packet measures for insufficiency murmur identification. Expert Syst App 38:4264–4271CrossRef
11.
Zurück zum Zitat Debbal SM, Bereksi-Reguig F (2008) Computerized heart sounds analysis. Comput Biol Med 38:263–280CrossRef Debbal SM, Bereksi-Reguig F (2008) Computerized heart sounds analysis. Comput Biol Med 38:263–280CrossRef
12.
Zurück zum Zitat Barma S, Chen BW, Ji W, Rho S, Chou CH, Wang JF (2016) Detection of the third heart sound based on nonlinear signal decomposition and time–frequency localization. IEEE Trans Biomed Eng 63:1718–1727CrossRef Barma S, Chen BW, Ji W, Rho S, Chou CH, Wang JF (2016) Detection of the third heart sound based on nonlinear signal decomposition and time–frequency localization. IEEE Trans Biomed Eng 63:1718–1727CrossRef
13.
Zurück zum Zitat Guillermo JE, Ricalde Castellanos LJ, Sanchez EN, Alanis AY (2015) Detection of heart murmurs based on radial wavelet neural network with kalman learning. Neurocomputing 164:307–317CrossRef Guillermo JE, Ricalde Castellanos LJ, Sanchez EN, Alanis AY (2015) Detection of heart murmurs based on radial wavelet neural network with kalman learning. Neurocomputing 164:307–317CrossRef
14.
Zurück zum Zitat Gavrovska A, Bogdanovic´ V, Reljin I, Reljin B (2014) Automatic heart sound detection in pediatric patients without electrocardiogram reference via pseudo-affine Wigner–Ville distribution and Haar wavelet lifting. Comput Methods Programs Biomed 113:515–528 Gavrovska A, Bogdanovic´ V, Reljin I, Reljin B (2014) Automatic heart sound detection in pediatric patients without electrocardiogram reference via pseudo-affine Wigner–Ville distribution and Haar wavelet lifting. Comput Methods Programs Biomed 113:515–528
15.
Zurück zum Zitat Sun S, Wang H, Jiang Z, Fang Y, Tao T (2014) Segmentation-based heart sound feature extraction combined with classifier models for a VSD diagnosis system. Expert Syst App 41:1769–1780CrossRef Sun S, Wang H, Jiang Z, Fang Y, Tao T (2014) Segmentation-based heart sound feature extraction combined with classifier models for a VSD diagnosis system. Expert Syst App 41:1769–1780CrossRef
16.
Zurück zum Zitat Barma S, Chen BW, Ji W, Jiang F, Wang JF (2015) Measurement of duration, energy of instantaneous frequencies, and splits of subcomponents of the second heart sound. IEEE Trans Instrum Meas 64:1958–1967CrossRef Barma S, Chen BW, Ji W, Jiang F, Wang JF (2015) Measurement of duration, energy of instantaneous frequencies, and splits of subcomponents of the second heart sound. IEEE Trans Instrum Meas 64:1958–1967CrossRef
17.
Zurück zum Zitat Sun S (2015) An innovative intelligent system based on automatic diagnostic feature extraction for diagnosing heart diseases. Knowl-Based Syst 75:224–238CrossRef Sun S (2015) An innovative intelligent system based on automatic diagnostic feature extraction for diagnosing heart diseases. Knowl-Based Syst 75:224–238CrossRef
18.
Zurück zum Zitat Varghees VN, Ramachandran KI (2014) A novel heart sound activity detection framework for automated heart sound analysis. Biomed Signal Process Control 13:174–188CrossRef Varghees VN, Ramachandran KI (2014) A novel heart sound activity detection framework for automated heart sound analysis. Biomed Signal Process Control 13:174–188CrossRef
19.
Zurück zum Zitat Sepehri AA, Gharehbaghi A, Dutoit T, Kocharian A, Kiani A (2010) A novel method for pediatric heart sound segmentation without using the ECG. Comput Methods Programs Biomed 99:43–48CrossRef Sepehri AA, Gharehbaghi A, Dutoit T, Kocharian A, Kiani A (2010) A novel method for pediatric heart sound segmentation without using the ECG. Comput Methods Programs Biomed 99:43–48CrossRef
20.
Zurück zum Zitat Dokur Z, Ölmez T (2009) Feature determination for heart sounds based on divergence analysis. Digit Signal Process 19:521–531CrossRef Dokur Z, Ölmez T (2009) Feature determination for heart sounds based on divergence analysis. Digit Signal Process 19:521–531CrossRef
21.
Zurück zum Zitat Tang H, Li T, Qiu T, Park Y (2012) Segmentation of heart sounds based on dynamic clustering. Biomed Signal Process Control 7:509–516CrossRef Tang H, Li T, Qiu T, Park Y (2012) Segmentation of heart sounds based on dynamic clustering. Biomed Signal Process Control 7:509–516CrossRef
22.
Zurück zum Zitat Sun S, Jiang Z, Wang H, Fang Y (2014) Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform. Comput Methods Programs Biomed 114:219–230CrossRef Sun S, Jiang Z, Wang H, Fang Y (2014) Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform. Comput Methods Programs Biomed 114:219–230CrossRef
23.
Zurück zum Zitat Moukadem A, Dieterlen A, Hueber N, Brandt C (2013) A robust heart sounds segmentation module based on S-transform. Biomed Signal Process Control 8:273–281CrossRef Moukadem A, Dieterlen A, Hueber N, Brandt C (2013) A robust heart sounds segmentation module based on S-transform. Biomed Signal Process Control 8:273–281CrossRef
24.
Zurück zum Zitat Papadaniil CD, Hadjileontiadis LJ (2014) Efficient Heart Sound Segmentation and Extraction Using Ensemble Empirical Mode Decomposition and Kurtosis Features. IEEE J Biomed Health Inform 18:1138–1152CrossRef Papadaniil CD, Hadjileontiadis LJ (2014) Efficient Heart Sound Segmentation and Extraction Using Ensemble Empirical Mode Decomposition and Kurtosis Features. IEEE J Biomed Health Inform 18:1138–1152CrossRef
25.
Zurück zum Zitat Springer DB, Tarassenko L, Clifford GD (2016) Logistic regression-HSMM-based heart sound segmentation. IEEE Trans Biomed Eng 63:822–832 Springer DB, Tarassenko L, Clifford GD (2016) Logistic regression-HSMM-based heart sound segmentation. IEEE Trans Biomed Eng 63:822–832
26.
Zurück zum Zitat Boutana D, Benidir M, Barkat B (2011) Segmentation and identification of some pathological phonocardiogram signals using time-frequency analysis. IET Signal Process 5:527–537MathSciNetCrossRef Boutana D, Benidir M, Barkat B (2011) Segmentation and identification of some pathological phonocardiogram signals using time-frequency analysis. IET Signal Process 5:527–537MathSciNetCrossRef
27.
Zurück zum Zitat Barma S, Chen BW, Man K, Wang JF (2015) Quantitative measurement of split of the second heart sound (S2). IEEE/ACM Trans Comput Biol Bioinform 12:851–860CrossRef Barma S, Chen BW, Man K, Wang JF (2015) Quantitative measurement of split of the second heart sound (S2). IEEE/ACM Trans Comput Biol Bioinform 12:851–860CrossRef
28.
Zurück zum Zitat Debbal SM, Bereksi-Reguig F (2007) Automatic measure of the split in the second cardiac sound by using the wavelet transform technique. Comput Biol Med 37:269–276CrossRef Debbal SM, Bereksi-Reguig F (2007) Automatic measure of the split in the second cardiac sound by using the wavelet transform technique. Comput Biol Med 37:269–276CrossRef
29.
Zurück zum Zitat Tang H, Li T, Park Y, Qiu T (2010) Separation of heart sound signal from noise in joint cycle frequency–time–frequency domains based on fuzzy detection. IEEE Trans Biomed Eng 57:2438–2447CrossRef Tang H, Li T, Park Y, Qiu T (2010) Separation of heart sound signal from noise in joint cycle frequency–time–frequency domains based on fuzzy detection. IEEE Trans Biomed Eng 57:2438–2447CrossRef
30.
Zurück zum Zitat Kwak C, Kwon OW (2012) Cardiac disorder classification by heart sound signals using murmur likelihood and hidden markov model state likelihood. IET Signal Process 6:326–334MathSciNetCrossRef Kwak C, Kwon OW (2012) Cardiac disorder classification by heart sound signals using murmur likelihood and hidden markov model state likelihood. IET Signal Process 6:326–334MathSciNetCrossRef
31.
Zurück zum Zitat Deng S-W, Han J-Q (2016) Towards heart sound classification without segmentation via autocorrelation feature and diffusion maps. Future Gener Comput Syst 60:13–21CrossRef Deng S-W, Han J-Q (2016) Towards heart sound classification without segmentation via autocorrelation feature and diffusion maps. Future Gener Comput Syst 60:13–21CrossRef
32.
Zurück zum Zitat Bhatikar SR, DeGroff C, Mahajan RL (2005) A classifier based on the artificial neural network approach for cardiologic auscultation in pediatrics. Artif Intell Med 33:251–260CrossRef Bhatikar SR, DeGroff C, Mahajan RL (2005) A classifier based on the artificial neural network approach for cardiologic auscultation in pediatrics. Artif Intell Med 33:251–260CrossRef
33.
Zurück zum Zitat Safara F, Doraisamy S, Azman A, Jantan A, Abdullah Ramaiah AR (2013) Multi-level basis selection of wavelet packet decomposition tree for heart sound classification. Comput Biol Med 43:1407–1414CrossRef Safara F, Doraisamy S, Azman A, Jantan A, Abdullah Ramaiah AR (2013) Multi-level basis selection of wavelet packet decomposition tree for heart sound classification. Comput Biol Med 43:1407–1414CrossRef
34.
Zurück zum Zitat Amit G, Gavriely N, Intrator N (2009) Cluster analysis and classification of heart sounds. Biomed Signal Process Control 4:26–36CrossRef Amit G, Gavriely N, Intrator N (2009) Cluster analysis and classification of heart sounds. Biomed Signal Process Control 4:26–36CrossRef
35.
Zurück zum Zitat Patidar S, Pachori RB (2014) Classification of cardiac sound signals using constrained tunable-Q wavelet transform. Expert Syst App 41(16):7161–7170CrossRef Patidar S, Pachori RB (2014) Classification of cardiac sound signals using constrained tunable-Q wavelet transform. Expert Syst App 41(16):7161–7170CrossRef
36.
Zurück zum Zitat Debbal SM, Bereksi-Reguig F (2007) Time-frequency analysis of the first and the second heartbeat Sounds. App Math Comput 184(2):1041–1052MathSciNetCrossRef Debbal SM, Bereksi-Reguig F (2007) Time-frequency analysis of the first and the second heartbeat Sounds. App Math Comput 184(2):1041–1052MathSciNetCrossRef
37.
Zurück zum Zitat Jong GJ, Aripriharta, Hendrick, Horng GJ (2017) Fuzzy inference engine integrated with blood pressure and heart variability for medical web platform. Wirel Pers Commun 92:1695–1712 Jong GJ, Aripriharta, Hendrick, Horng GJ (2017) Fuzzy inference engine integrated with blood pressure and heart variability for medical web platform. Wirel Pers Commun 92:1695–1712
38.
Zurück zum Zitat Ma JL, Chen MB, Dong MC (2014) High-fidelity data transmission of multi vital signs for distributed e-health applications. IEEE International Symposium on Bioelectronics and Bioinformatics, 1–4 Ma JL, Chen MB, Dong MC (2014) High-fidelity data transmission of multi vital signs for distributed e-health applications. IEEE International Symposium on Bioelectronics and Bioinformatics, 1–4
40.
Zurück zum Zitat Wang SH, Satapathy SC, Anderson D, Chen S-X, Zhang Y-D (2021) Deep Fractional Max Pooling Neural Network for COVID-19 Recognition. Front Public Health 9:726144 Wang SH, Satapathy SC, Anderson D, Chen S-X, Zhang Y-D (2021) Deep Fractional Max Pooling Neural Network for COVID-19 Recognition. Front Public Health 9:726144
41.
Zurück zum Zitat Chen C, Li J, Wang Y, Xu Q, Fu X, Li J, ... & Wang Y (2019) Potential drug targets identification for rheumatoid arthritis based on the protein-protein interactions network and cluster analysis. J Cell Biochem 120(11):18162–18172 Chen C, Li J, Wang Y, Xu Q, Fu X, Li J, ... & Wang Y (2019) Potential drug targets identification for rheumatoid arthritis based on the protein-protein interactions network and cluster analysis. J Cell Biochem 120(11):18162–18172
42.
Zurück zum Zitat Huang R, Wen H, Zhang Y, Wang Y, Zhou L, Luo X (2021) New Repurposing Candidates for 12 Food and Drug Administration-Approved Drugs Based on Comprehensive Similarity Analysis between Human and Pathogen. ACS Omega 6(18):11955–11965 Huang R, Wen H, Zhang Y, Wang Y, Zhou L, Luo X (2021) New Repurposing Candidates for 12 Food and Drug Administration-Approved Drugs Based on Comprehensive Similarity Analysis between Human and Pathogen. ACS Omega 6(18):11955–11965
43.
Zurück zum Zitat Kriegel HP, Schubert E, Zimek A (2011) Evaluation of multiple clustering solutions. In 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings Held in Conjunction with ECML PKDD 2011, Athens, Greece, 55–66 Kriegel HP, Schubert E, Zimek A (2011) Evaluation of multiple clustering solutions. In 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings Held in Conjunction with ECML PKDD 2011, Athens, Greece, 55–66
44.
Zurück zum Zitat Liu Q, Hu L, Zhu J (2020) Classification of pediatric heart murmurs based on a combination of time-frequency and time-scale features. Biomed Signal Process Control 55:101613 Liu Q, Hu L, Zhu J (2020) Classification of pediatric heart murmurs based on a combination of time-frequency and time-scale features. Biomed Signal Process Control 55:101613
45.
Zurück zum Zitat Sun Y, Xu L, Li Z, Li Y, Zhao J, Li X (2021) Heart sound analysis based on a deep convolutional neural network combined with a heart sound signal enhanced algorithm. IEEE Access 9:101775–101786 Sun Y, Xu L, Li Z, Li Y, Zhao J, Li X (2021) Heart sound analysis based on a deep convolutional neural network combined with a heart sound signal enhanced algorithm. IEEE Access 9:101775–101786
46.
Zurück zum Zitat Wang W, Ye W, Xu Y (2019) Detection of surface cracks in building materials based on Euclidean distance and artificial neural network. IEEE Access 7:6948–6956 Wang W, Ye W, Xu Y (2019) Detection of surface cracks in building materials based on Euclidean distance and artificial neural network. IEEE Access 7:6948–6956
47.
Zurück zum Zitat Zhu J, Liu Q, Hu L, Han X (2020) An improved U-Net model for automatic tumor detection in medical images. J Healthcare Eng 2020:8862497 Zhu J, Liu Q, Hu L, Han X (2020) An improved U-Net model for automatic tumor detection in medical images. J Healthcare Eng 2020:8862497
48.
Zurück zum Zitat Huang J, Ding Y, Liu H (2019) Multi-scale weighted permutation entropy analysis of biomedical signals based on eigenvalue decomposition. J Med Syst 43(3):47 Huang J, Ding Y, Liu H (2019) Multi-scale weighted permutation entropy analysis of biomedical signals based on eigenvalue decomposition. J Med Syst 43(3):47
49.
Zurück zum Zitat Tao X, Guo J, Zhang X (2019) A feature extraction method for vibration signals of large rotating machinery based on a Hessian matrix and kernel principal component analysis. Measurement 145:301–312 Tao X, Guo J, Zhang X (2019) A feature extraction method for vibration signals of large rotating machinery based on a Hessian matrix and kernel principal component analysis. Measurement 145:301–312
50.
Zurück zum Zitat Souri Y, Abdollahi A (2021) Eigenvalue-based hybrid feature selection method for prediction of Parkinson’s disease. Biomed Signal Process Control 70:102907 Souri Y, Abdollahi A (2021) Eigenvalue-based hybrid feature selection method for prediction of Parkinson’s disease. Biomed Signal Process Control 70:102907
51.
Zurück zum Zitat Kostadinova K, Boucher MC, Drouin MA (2018) Analysis of Eigenvalues and Eigenvectors of the Hessian Matrix for Texture Classification. IEEE Access 6:33732–33740 Kostadinova K, Boucher MC, Drouin MA (2018) Analysis of Eigenvalues and Eigenvectors of the Hessian Matrix for Texture Classification. IEEE Access 6:33732–33740
52.
Zurück zum Zitat Wang W, Li Y, Chen T, Liu J, Chen Y (2019) Image classification based on locality preserving discriminant analysis and structural similarity index. Int J Wavelets Multiresolut Inf Process 17(02):1950010MathSciNet Wang W, Li Y, Chen T, Liu J, Chen Y (2019) Image classification based on locality preserving discriminant analysis and structural similarity index. Int J Wavelets Multiresolut Inf Process 17(02):1950010MathSciNet
53.
Zurück zum Zitat Gupta A, Ayhan MS, Maida AS (2018) Unsupervised segmentation of medical images using Voronoi diagram and watershed transform. Biomed Signal Process Control 40:357–370 Gupta A, Ayhan MS, Maida AS (2018) Unsupervised segmentation of medical images using Voronoi diagram and watershed transform. Biomed Signal Process Control 40:357–370
54.
Zurück zum Zitat Wang L, Li J, Chen H, Zuo W, Chen D (2019) A novel multi-resolution method for image segmentation using the Wasserstein distance. Pattern Recogn 93:307–318 Wang L, Li J, Chen H, Zuo W, Chen D (2019) A novel multi-resolution method for image segmentation using the Wasserstein distance. Pattern Recogn 93:307–318
55.
Zurück zum Zitat Zhang L, Cheng G, Qin J (2018) Data fusion for biomedical data analysis: A comprehensive review. J Biomed Inform 88:96–114 Zhang L, Cheng G, Qin J (2018) Data fusion for biomedical data analysis: A comprehensive review. J Biomed Inform 88:96–114
56.
Zurück zum Zitat Liang M, Dong Y, Sun Y, Wang W, Zhang L (2020) A survey on internet of things for healthcare. IEEE Access 8:37443–37465 Liang M, Dong Y, Sun Y, Wang W, Zhang L (2020) A survey on internet of things for healthcare. IEEE Access 8:37443–37465
57.
Zurück zum Zitat Ji Z, Pan Y, Wang C, Huang C, Wang Y (2019) Multi-source medical data fusion in diagnosis and treatment of heart failure. BioMed Res Int Ji Z, Pan Y, Wang C, Huang C, Wang Y (2019) Multi-source medical data fusion in diagnosis and treatment of heart failure. BioMed Res Int
58.
Zurück zum Zitat Yang X, Zhang L, Feng Q (2018) Data preprocessing for data fusion. In: Handbook of data fusion (pp. 133–159). CRC Press Yang X, Zhang L, Feng Q (2018) Data preprocessing for data fusion. In: Handbook of data fusion (pp. 133–159). CRC Press
59.
Zurück zum Zitat Guler I, Ubeyli ED (2020) Automatic detection of heart sound anomalies using deep neural networks and feature fusion. Biomed Signal Process Control 57:101767 Guler I, Ubeyli ED (2020) Automatic detection of heart sound anomalies using deep neural networks and feature fusion. Biomed Signal Process Control 57:101767
60.
Zurück zum Zitat Li Y, Zhang L, Liu X, Wu C (2020) Epileptic seizure detection by fusing multi-domain EEG data. Comput Biol Med 120:103755 Li Y, Zhang L, Liu X, Wu C (2020) Epileptic seizure detection by fusing multi-domain EEG data. Comput Biol Med 120:103755
61.
Zurück zum Zitat Yang X, Zhang L, Feng Q (2019) Advances in data fusion for biomedical informatics. J Biomed Inform 94:103177 Yang X, Zhang L, Feng Q (2019) Advances in data fusion for biomedical informatics. J Biomed Inform 94:103177
62.
Zurück zum Zitat Chen Y, Zhang L, Zhao H, Wang M (2020) Intelligent diagnosis of heart disease by integrating heart sound and electrocardiogram signals. Comput Methods Programs Biomed 187:105283 Chen Y, Zhang L, Zhao H, Wang M (2020) Intelligent diagnosis of heart disease by integrating heart sound and electrocardiogram signals. Comput Methods Programs Biomed 187:105283
Metadaten
Titel
A New Defect Diameter Prediction using Heart Sound and Possibility to Implement as IoT Healthcare
verfasst von
Aripriharta
Gwo-Jiun Horng
Publikationsdatum
05.08.2023
Verlag
Springer US
Erschienen in
Mobile Networks and Applications / Ausgabe 6/2023
Print ISSN: 1383-469X
Elektronische ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-023-02201-y