Skip to main content
Erschienen in: Energy Systems 2/2018

06.03.2017 | Original Paper

A new design of a solar water storage wall: a system-level model and simulation

verfasst von: Mohammad Sameti

Erschienen in: Energy Systems | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Some configurations have been proposed as passive solar wall, but nearly all of them suffer from common shortcomings such as high heat loss flux and low thermal capacity. In this paper, a modified design for building passive solar wall is proposed and a detailed computerized model for its dynamic behavior was developed as a triplet (S, Q, M) from first principles and empirical equations, such that the designer is able to alter any of the variables. Hence, the wall-room properties can be adjusted to improve the wall performance. In this model, S is a solar water wall which is designed on the south wall of a building with a water storage tank as the sensible thermal storage placed inside to passively heats the space with controlled heat transfer and a sufficiently sized storage. Also, Q is a question relating to S which is the performance evaluation of the proposed system including annual and monthly performance along with the room and storage temperatures. Finally, M is a set of mathematical statements \(\hbox {M}=\left\{ {\Sigma \_\hbox {1},\Sigma \_\hbox {2},\Sigma \_\hbox {3},\ldots } \right\} \) which can be used to answer Q. The statements M are based on the lumped capacitance approach which utilizes solar optocalorics, solar thermal conversion and convective heat transfer to simulate passive space heating of a small building. A code was developed to solve the problem and to evaluate parametric sensitivity for design features. A new TrnSys model was introduced and the code results were compared with TrnSys outcome.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sameti, M.: Electrical energy efficient building through distributed generation. Int. J. Renew. Energy Res. 4(3), 777–783 (2014) Sameti, M.: Electrical energy efficient building through distributed generation. Int. J. Renew. Energy Res. 4(3), 777–783 (2014)
3.
Zurück zum Zitat Sameti, M., Haghighat, F.: Optimization approaches in district heating and cooling thermal network. Energy Build. 140(1), 121–130 (2017)CrossRef Sameti, M., Haghighat, F.: Optimization approaches in district heating and cooling thermal network. Energy Build. 140(1), 121–130 (2017)CrossRef
4.
Zurück zum Zitat Sameti, M., Jokar, M.A., Astaraei, F.R.: Prediction of solar Stirling power generation in smart grid by GA-ANN model. Int. J. Comput. Appl. Technol. 55(2), 147–157 (2017)CrossRef Sameti, M., Jokar, M.A., Astaraei, F.R.: Prediction of solar Stirling power generation in smart grid by GA-ANN model. Int. J. Comput. Appl. Technol. 55(2), 147–157 (2017)CrossRef
5.
Zurück zum Zitat Sameti, M., Kasaeian, A.: Numerical simulation of combined solar passive heating and radiative cooling for a building. Build. Simul. 8(3), 239–253 (2015)CrossRef Sameti, M., Kasaeian, A.: Numerical simulation of combined solar passive heating and radiative cooling for a building. Build. Simul. 8(3), 239–253 (2015)CrossRef
6.
Zurück zum Zitat Pirkandi, J., Jokar, M., Sameti, M., Kasaeian, A., Kasaeian, F.: Simulation and multi-objective optimization of a combined heat and power (CHP) system integrated with low-energy building. J. Build. Eng. 5, 13–23 (2016)CrossRef Pirkandi, J., Jokar, M., Sameti, M., Kasaeian, A., Kasaeian, F.: Simulation and multi-objective optimization of a combined heat and power (CHP) system integrated with low-energy building. J. Build. Eng. 5, 13–23 (2016)CrossRef
7.
Zurück zum Zitat Razi Astaraei, F., Sameti, M., Jokar, M.A., Pourfayaz, F.: Numerical simulation of solar-driven Kalina cycle performance for centralized residential buildings in Iran. Intell. Build. Int. (2016). doi:10.1080/17508975.2016.1197092 Razi Astaraei, F., Sameti, M., Jokar, M.A., Pourfayaz, F.: Numerical simulation of solar-driven Kalina cycle performance for centralized residential buildings in Iran. Intell. Build. Int. (2016). doi:10.​1080/​17508975.​2016.​1197092
8.
Zurück zum Zitat Sameti, M., Ghasemipour, S.S.: Thermodynamic study and performance simulation of a renewable-based Kalina cycle in distributed generation. Int. J. Model. Simul. 37(1), 54–66 (2017)CrossRef Sameti, M., Ghasemipour, S.S.: Thermodynamic study and performance simulation of a renewable-based Kalina cycle in distributed generation. Int. J. Model. Simul. 37(1), 54–66 (2017)CrossRef
9.
Zurück zum Zitat Schnieders, J., Feist, W., Rongen, L.: Passive houses for different climate zones. Energy Build. 105, 71–87 (2015)CrossRef Schnieders, J., Feist, W., Rongen, L.: Passive houses for different climate zones. Energy Build. 105, 71–87 (2015)CrossRef
10.
Zurück zum Zitat Zamora, B., Kaiser, A.: Thermal and dynamic optimization of the convective flow in Trombe wall shaped channels by numerical investigation. Heat Mass. Transf. 45, 1393–1407 (2009)CrossRef Zamora, B., Kaiser, A.: Thermal and dynamic optimization of the convective flow in Trombe wall shaped channels by numerical investigation. Heat Mass. Transf. 45, 1393–1407 (2009)CrossRef
11.
Zurück zum Zitat Koyunbaba, B.K., Yilmaz, Z., Ulgen, K.: An approach for energy modeling of a building integrated photovoltaic (BIPV) Trombe wall system. Energy Build. 67, 680–688 (2013)CrossRef Koyunbaba, B.K., Yilmaz, Z., Ulgen, K.: An approach for energy modeling of a building integrated photovoltaic (BIPV) Trombe wall system. Energy Build. 67, 680–688 (2013)CrossRef
12.
Zurück zum Zitat Stazi, F., Mastrucci, A., di Perna, C.: The behaviour of solar walls in residential buildings with different insulation levels: an experimental and numerical study. Energy Build. 47, 217–229 (2012)CrossRef Stazi, F., Mastrucci, A., di Perna, C.: The behaviour of solar walls in residential buildings with different insulation levels: an experimental and numerical study. Energy Build. 47, 217–229 (2012)CrossRef
13.
Zurück zum Zitat Abbassi, F., Dimassi, N., Dehmani, L.: Energetic study of a Trombe wall system under different Tunisian building configurations. Energy Build. 80, 302–308 (2014)CrossRef Abbassi, F., Dimassi, N., Dehmani, L.: Energetic study of a Trombe wall system under different Tunisian building configurations. Energy Build. 80, 302–308 (2014)CrossRef
14.
Zurück zum Zitat Chan, H.Y., Riffat, S.B., Zhu, J.: Review of passive solar heating and cooling technologies. Renew. Sustain. Energy Rev. 14(2), 781–789 (2010)CrossRef Chan, H.Y., Riffat, S.B., Zhu, J.: Review of passive solar heating and cooling technologies. Renew. Sustain. Energy Rev. 14(2), 781–789 (2010)CrossRef
15.
Zurück zum Zitat Onbasioglu, H., Egrican, A.N.: Experimental approach to the thermal response of passive systems. Energy Convers. Manag. 43(15), 2053–2065 (2002)CrossRef Onbasioglu, H., Egrican, A.N.: Experimental approach to the thermal response of passive systems. Energy Convers. Manag. 43(15), 2053–2065 (2002)CrossRef
16.
Zurück zum Zitat Shen, J., Lassue, S., Zalewski, L., Huang, D.: Numerical study on thermal behavior of classical or composite Trombe solar walls. Energy Build. 39(8), 962–974 (2007)CrossRef Shen, J., Lassue, S., Zalewski, L., Huang, D.: Numerical study on thermal behavior of classical or composite Trombe solar walls. Energy Build. 39(8), 962–974 (2007)CrossRef
17.
Zurück zum Zitat Saadatian, O., Sopian, K., Lim, C.H., Asim, N., Sulaiman, M.Y.: Trome walls: a review of opportunities and challenges in research and development. Renew. Sustain. Energy Rev. 16(8), 6340–6351 (2012)CrossRef Saadatian, O., Sopian, K., Lim, C.H., Asim, N., Sulaiman, M.Y.: Trome walls: a review of opportunities and challenges in research and development. Renew. Sustain. Energy Rev. 16(8), 6340–6351 (2012)CrossRef
18.
Zurück zum Zitat Shen, J., Lassue, S., Zalewski, L., Huang, D.: Numerical study of classical and composite solar walls by TRNSYS. J. Therm. Sci. 16(1), 46–55 (2007)CrossRef Shen, J., Lassue, S., Zalewski, L., Huang, D.: Numerical study of classical and composite solar walls by TRNSYS. J. Therm. Sci. 16(1), 46–55 (2007)CrossRef
19.
Zurück zum Zitat Rabani, M., Kalantar, V., Dehghan, A.A., Faghih, A.K.: Experimental study of the heating performance of a Trombe wall with a new design. Sol. Energy 118, 359–374 (2015)CrossRef Rabani, M., Kalantar, V., Dehghan, A.A., Faghih, A.K.: Experimental study of the heating performance of a Trombe wall with a new design. Sol. Energy 118, 359–374 (2015)CrossRef
20.
Zurück zum Zitat Hu, Z., Luo, B., He, W.: An experimental investigation of a novel Trombe wall with venetian blind structure. Energy Proc. 70, 691–698 (2015)CrossRef Hu, Z., Luo, B., He, W.: An experimental investigation of a novel Trombe wall with venetian blind structure. Energy Proc. 70, 691–698 (2015)CrossRef
21.
Zurück zum Zitat Brownson, J.R.S.: Solar Energy Conversion Systems. Elsevier, Amsterdam (2014) Brownson, J.R.S.: Solar Energy Conversion Systems. Elsevier, Amsterdam (2014)
23.
Zurück zum Zitat Rawlings, R.: Capturing Solar Energy. CIBSE Publications, London (2009) Rawlings, R.: Capturing Solar Energy. CIBSE Publications, London (2009)
24.
Zurück zum Zitat Eicker, U.: Solar Technologies for Buildings. Wiley, New York (2006) Eicker, U.: Solar Technologies for Buildings. Wiley, New York (2006)
25.
Zurück zum Zitat Albanese, M.V., Robinson, B.S., Brehob, E.G., Sharp, M.K.: Simulated and experimental performance of a heat pipe assisted solar wall. Sol. Energy 86(5), 1552–1562 (2012)CrossRef Albanese, M.V., Robinson, B.S., Brehob, E.G., Sharp, M.K.: Simulated and experimental performance of a heat pipe assisted solar wall. Sol. Energy 86(5), 1552–1562 (2012)CrossRef
26.
Zurück zum Zitat Çengel, Y.A., Ghajar, A.J.: Heat and Mass Transfer: Fundamentals and Applications. McGraw-Hill, New York (2014) Çengel, Y.A., Ghajar, A.J.: Heat and Mass Transfer: Fundamentals and Applications. McGraw-Hill, New York (2014)
27.
Zurück zum Zitat Bergman, T.L., Incropera, F.P., Lavine, A.S.: Fundamentals of Heat and Mass Transfer. Wiley, New York (2011) Bergman, T.L., Incropera, F.P., Lavine, A.S.: Fundamentals of Heat and Mass Transfer. Wiley, New York (2011)
28.
Zurück zum Zitat Kalogirou, S.A.: Solar Energy Engineering: Processes and Systems. Elsevier, Amsterdam (2013) Kalogirou, S.A.: Solar Energy Engineering: Processes and Systems. Elsevier, Amsterdam (2013)
29.
Zurück zum Zitat Tarazi, N.K.: A model of a Trombe wall. Renew. Energy 1(3), 533–541 (1991)CrossRef Tarazi, N.K.: A model of a Trombe wall. Renew. Energy 1(3), 533–541 (1991)CrossRef
30.
Zurück zum Zitat Duffie, J.A., Beckman, W.A.: Solar Engineering of Thermal Processes. Wiley, New York (2013)CrossRef Duffie, J.A., Beckman, W.A.: Solar Engineering of Thermal Processes. Wiley, New York (2013)CrossRef
31.
Zurück zum Zitat Robinson, B.S., Sharp, M.K.: Heating season performance improvements for a solar heat pipe system. Sol. Energy 110, 39–49 (2014)CrossRef Robinson, B.S., Sharp, M.K.: Heating season performance improvements for a solar heat pipe system. Sol. Energy 110, 39–49 (2014)CrossRef
Metadaten
Titel
A new design of a solar water storage wall: a system-level model and simulation
verfasst von
Mohammad Sameti
Publikationsdatum
06.03.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Energy Systems / Ausgabe 2/2018
Print ISSN: 1868-3967
Elektronische ISSN: 1868-3975
DOI
https://doi.org/10.1007/s12667-017-0235-y

Weitere Artikel der Ausgabe 2/2018

Energy Systems 2/2018 Zur Ausgabe