Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

13.06.2019

A new efficient approach for extracting the closed episodes for workload prediction in cloud

Zeitschrift:
Computing
Autoren:
Maryam Amiri, Leyli Mohammad-Khanli, Raffaela Mirandola
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The prediction of the future workload of applications is an essential step guiding resource provisioning in cloud environments. In our previous works, we proposed two prediction models based on pattern mining. This paper builds on our previous experience and focuses on the issue of time and space complexities of the prediction model. Specifically, it presents a general approach to improve the efficiency of the pattern mining engine, which leads to improving the efficiency of the predictors. The approach is composed of two steps: (1) Firstly, to improve space complexity, redundant occurrences of patterns are defined and algorithms are suggested to identify and omit them. (2) To improve time complexity, a new data structure, called closed pattern backward tree, is presented for mining closed patterns directly. The approach not only improves the efficiency of our predictors, but also can be employed in different fields of pattern mining. The performance of the proposed approach is investigated based on real and synthetic workloads of cloud. The experimental results show that the proposed approach could improve the efficiency of the pattern mining engine significantly in comparison to common methods to extract closed patterns.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise