Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 4/2017

11.11.2016

A new fabrication process of TGV substrate with silicon vertical feedthroughs using double sided glass in silicon reflow process

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a new fabrication process of through glass via (TGV) substrate, which combines glass and silicon into a single wafer. By using double sided glass in silicon reflow process with a patterned silicon mold, a thick and robust TGV substrate which is difficult or timewasting to realize by single side glass reflow process could be achieved. The fabrication process and parameters are studied in details. Surfacing roughness of the TGV substrate after polishing is measured to be 3.421 nm, showing a high surface quality for anodic bonding process. Resistance of vertical feedthroughs are measured in the range of 180 to 260 Ω, indicating that the substrate can be used in a large variety of application. Finally, strength tests of the bonding interface are measured to be as high as 7.28 MPa, indicating a mechanically strong bonding.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.M. Torunbalci, S.E. Alper, T. Akin, Wafer level hermetic sealing of MEMS devices with vertical feedthroughs using anodic bonding. Sens. Actuators A 224, 169–176 (2015)CrossRef M.M. Torunbalci, S.E. Alper, T. Akin, Wafer level hermetic sealing of MEMS devices with vertical feedthroughs using anodic bonding. Sens. Actuators A 224, 169–176 (2015)CrossRef
2.
Zurück zum Zitat M.M. Torunbalci, S.E. Alper, T. Akin, A method for wafer level hermetic packaging of SOI-MEMS devices with embedded vertical feedthroughs using advanced MEMS process, J. Micromech. Microeng. 25, 125030 (2015)CrossRef M.M. Torunbalci, S.E. Alper, T. Akin, A method for wafer level hermetic packaging of SOI-MEMS devices with embedded vertical feedthroughs using advanced MEMS process, J. Micromech. Microeng. 25, 125030 (2015)CrossRef
3.
Zurück zum Zitat M.M. Torunbalci, S.E. Alper, T. Akin, Advanced MEMS process for wafer level hermetic encapsulation of MEMS devices using SOI cap wafers with vertical feedthroughs. J. Microelectromech. Syst. 24, 556–564 (2015)CrossRef M.M. Torunbalci, S.E. Alper, T. Akin, Advanced MEMS process for wafer level hermetic encapsulation of MEMS devices using SOI cap wafers with vertical feedthroughs. J. Microelectromech. Syst. 24, 556–564 (2015)CrossRef
4.
Zurück zum Zitat I. Savidis, S.M. Alam, A. Jain, S. Pozder, R.E. Jones, R. Chatterjee, Electrical modeling and characterization of through-silicon vias (TSVs) for 3-D integrated circuits. Microelectron. J. 41, 9–16 (2010)CrossRef I. Savidis, S.M. Alam, A. Jain, S. Pozder, R.E. Jones, R. Chatterjee, Electrical modeling and characterization of through-silicon vias (TSVs) for 3-D integrated circuits. Microelectron. J. 41, 9–16 (2010)CrossRef
5.
Zurück zum Zitat C.-T. Ko, Z.-C. Hsiao, Y.-J. Chang, P.-S. Chen, Y.-J. Hwang, H.-C. Fu et al., A wafer-level three-dimensional integration scheme with Cu TSVs based on microbump/adhesive hybrid bonding for three-dimensional memory application. IEEE Trans. Device Mater. Reliab. 12, 209–216 (2012)CrossRef C.-T. Ko, Z.-C. Hsiao, Y.-J. Chang, P.-S. Chen, Y.-J. Hwang, H.-C. Fu et al., A wafer-level three-dimensional integration scheme with Cu TSVs based on microbump/adhesive hybrid bonding for three-dimensional memory application. IEEE Trans. Device Mater. Reliab. 12, 209–216 (2012)CrossRef
6.
Zurück zum Zitat J.H. Lee, H.J. Kim, J.-Y. Song, C.W. Lee, T.H. Ha, IEEE, “A study on wafer level TSV build-up integration method,” in 2013 IEEE International 3rd Systems Integration Conference, 2013 J.H. Lee, H.J. Kim, J.-Y. Song, C.W. Lee, T.H. Ha, IEEE, “A study on wafer level TSV build-up integration method,” in 2013 IEEE International 3rd Systems Integration Conference, 2013
7.
Zurück zum Zitat S. Ogawa, S. Soda, S.-S. Lee, S. Izuo, Y. Yoshida, RF-MEMS switch with through-silicon via by the molten solder ejection method. Sens. Actuators A Phys. 181, 77–80 (2012)CrossRef S. Ogawa, S. Soda, S.-S. Lee, S. Izuo, Y. Yoshida, RF-MEMS switch with through-silicon via by the molten solder ejection method. Sens. Actuators A Phys. 181, 77–80 (2012)CrossRef
8.
Zurück zum Zitat S. Shi, X. Wang, C. Xu, J. Yuan, J. Fang, S. Liu, Simulation and fabrication of two Cu TSV electroplating methods for wafer-level 3D integrated circuits packaging. Sens. Actuators A Phys. 203, 52–61 (2013)CrossRef S. Shi, X. Wang, C. Xu, J. Yuan, J. Fang, S. Liu, Simulation and fabrication of two Cu TSV electroplating methods for wafer-level 3D integrated circuits packaging. Sens. Actuators A Phys. 203, 52–61 (2013)CrossRef
9.
Zurück zum Zitat Z. Wang, 3-D integration and through-silicon vias in MEMS and microsensors. J. Microelectromech. Syst. 24, 1211–1244 (2015)CrossRef Z. Wang, 3-D integration and through-silicon vias in MEMS and microsensors. J. Microelectromech. Syst. 24, 1211–1244 (2015)CrossRef
10.
Zurück zum Zitat J.-Y. Lee, S.-W. Lee, S.-K. Lee, and J.-H. Park, Through-glass copper via using the glass reflow and seedless electroplating processes for wafer-level RF MEMS packaging, J. Micromech. Microeng. 23, 085012 (2013)CrossRef J.-Y. Lee, S.-W. Lee, S.-K. Lee, and J.-H. Park, Through-glass copper via using the glass reflow and seedless electroplating processes for wafer-level RF MEMS packaging, J. Micromech. Microeng. 23, 085012 (2013)CrossRef
11.
Zurück zum Zitat L. Hofmann, R. Ecke, S.E. Schulz, T. Gessner, Investigations regarding through silicon via filling for 3D integration by periodic pulse reverse plating with and without additives. Microelectron. Eng. 88, 705–708 (2011)CrossRef L. Hofmann, R. Ecke, S.E. Schulz, T. Gessner, Investigations regarding through silicon via filling for 3D integration by periodic pulse reverse plating with and without additives. Microelectron. Eng. 88, 705–708 (2011)CrossRef
12.
Zurück zum Zitat S.-W. Lee, S.-K. Lee, and J.-H. Park, High-density through-wafer copper via array in insulating glass mold using reflow process, Jpn. J. Appl. Phys. 54, 047202 (2015)CrossRef S.-W. Lee, S.-K. Lee, and J.-H. Park, High-density through-wafer copper via array in insulating glass mold using reflow process, Jpn. J. Appl. Phys. 54, 047202 (2015)CrossRef
13.
Zurück zum Zitat A. Benali, M. Faqir, M. Bouya, A. Benabdellah, M. Ghogho, Analytical and finite element modeling of through glass via thermal stress. Microelectron. Eng. 151, 12–18 (2016)CrossRef A. Benali, M. Faqir, M. Bouya, A. Benabdellah, M. Ghogho, Analytical and finite element modeling of through glass via thermal stress. Microelectron. Eng. 151, 12–18 (2016)CrossRef
14.
Zurück zum Zitat A. Benali, M. Bouya, M. Faqir, A. El Amrani, M. Ghogho, A. Benali et al., “Through glass via thermomechanical analysis: geometrical parameters effect on thermal stress,” in 2013 8th International Design and Test Symposium (Idt), 2013 A. Benali, M. Bouya, M. Faqir, A. El Amrani, M. Ghogho, A. Benali et al., “Through glass via thermomechanical analysis: geometrical parameters effect on thermal stress,” in 2013 8th International Design and Test Symposium (Idt), 2013
15.
Zurück zum Zitat J.-H. Chien, H. Yu, C.-L. Lung, H.-C. Chang, N.-Y. Tsai, Y.-F. Chou et al., “Thermal stress aware design for stacking IC with through glass via,” in 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference, ed, 2012 J.-H. Chien, H. Yu, C.-L. Lung, H.-C. Chang, N.-Y. Tsai, Y.-F. Chou et al., “Thermal stress aware design for stacking IC with through glass via,” in 2012 7th International Microsystems, Packaging, Assembly and Circuits Technology Conference, ed, 2012
16.
Zurück zum Zitat S. Cho, V. Sundaram, R.R. Tummala, Y.K. Joshi, Impact of copper through-package vias on thermal performance of glass interposers. IEEE Trans. Compon. Packag. Manuf. Technol. 5, 1075–1084 (2015)CrossRef S. Cho, V. Sundaram, R.R. Tummala, Y.K. Joshi, Impact of copper through-package vias on thermal performance of glass interposers. IEEE Trans. Compon. Packag. Manuf. Technol. 5, 1075–1084 (2015)CrossRef
17.
Zurück zum Zitat R.M. Haque, K.D. Wise, A glass-in-silicon reflow process for three-dimensional microsystems. J. Microelectromech. Syst. 22, 1470–1477 (2013)CrossRef R.M. Haque, K.D. Wise, A glass-in-silicon reflow process for three-dimensional microsystems. J. Microelectromech. Syst. 22, 1470–1477 (2013)CrossRef
18.
Zurück zum Zitat I.-J. Hyeon, C.-W. Baek, Micromachined substrate integrated waveguides with electroplated copper vias in reflowed glass substrate for millimeter-wave applications. Microelectron. Eng. 131, 19–23 (2015)CrossRef I.-J. Hyeon, C.-W. Baek, Micromachined substrate integrated waveguides with electroplated copper vias in reflowed glass substrate for millimeter-wave applications. Microelectron. Eng. 131, 19–23 (2015)CrossRef
19.
Zurück zum Zitat C.-W. Lin, C.-P. Hsu, H.-A. Yang, W. C. Wang, W. Fang, “Implementation of silicon-on-glass MEMS devices with embedded through-wafer silicon vias using the glass reflow process for wafer-level packaging and 3D chip integration,” J. Micromech. Microeng. 18 (2008) C.-W. Lin, C.-P. Hsu, H.-A. Yang, W. C. Wang, W. Fang, “Implementation of silicon-on-glass MEMS devices with embedded through-wafer silicon vias using the glass reflow process for wafer-level packaging and 3D chip integration,” J. Micromech. Microeng. 18 (2008)
20.
Zurück zum Zitat Y. Sun, D. Yu, R. He, F. Dai, X. Sun, L. Wan, “The development of low cost through glass via (TGV) interposer using additive method for via filling,” in 2012 13th International Conference on Electronic Packaging Technology and High Density Packaging (Icept-Hdp 2012), pp. 49–51, 2012 Y. Sun, D. Yu, R. He, F. Dai, X. Sun, L. Wan, “The development of low cost through glass via (TGV) interposer using additive method for via filling,” in 2012 13th International Conference on Electronic Packaging Technology and High Density Packaging (Icept-Hdp 2012), pp. 49–51, 2012
21.
Zurück zum Zitat Y. Zhu, B. Chen, D. Gao, M. Qin, Q. Huang, J. Huang, A robust and low-power 2-D thermal wind sensor based on a glass-in-silicon reflow process, Microsyst. Technol. 22, 1–12 (2015) Y. Zhu, B. Chen, D. Gao, M. Qin, Q. Huang, J. Huang, A robust and low-power 2-D thermal wind sensor based on a glass-in-silicon reflow process, Microsyst. Technol. 22, 1–12 (2015)
Metadaten
Titel
A new fabrication process of TGV substrate with silicon vertical feedthroughs using double sided glass in silicon reflow process
Publikationsdatum
11.11.2016
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 4/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-6005-0

Weitere Artikel der Ausgabe 4/2017

Journal of Materials Science: Materials in Electronics 4/2017 Zur Ausgabe

Neuer Inhalt