Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

11.11.2019 | Focus | Ausgabe 11/2020

Soft Computing 11/2020

A new fuzzy time series method based on an ARMA-type recurrent Pi-Sigma artificial neural network

Zeitschrift:
Soft Computing > Ausgabe 11/2020
Autoren:
Cem Kocak, Ali Zafer Dalar, Ozge Cagcag Yolcu, Eren Bas, Erol Egrioglu
Wichtige Hinweise
Communicated by Mu-Yen Chen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

As it known in many studies, the fuzzy time series methods do not need assumptions such as stationary and the linearity required for classical time series approaches, so there is a huge field of study on fuzzy time series methods in the time series literature. Fuzzy time series literature has the studies which use both the various models of artificial neural networks and the different optimization methods of artificial intelligence jointly. In this study, a new fuzzy time series algorithm based on an ARMA-type recurrent Pi-Sigma artificial neural network is introduced. It is expected that the proposed method increases the forecasting performance for many real-life time series because of using more input which is the error term obtained from Pi-Sigma artificial neural network with recurrent structure. Therefore, it can be considered that the proposed method is based on an ARMA-type fuzzy time series forecasting model. In the proposed method, the training of recurrent ARMA-type Pi-Sigma neural network is performed by particle swarm optimization. The proposed method has been applied to a real-data set as well as simulated data sets of a real-life time series, and the obtained results have been compared with some other methods in the literature.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2020

Soft Computing 11/2020 Zur Ausgabe

Premium Partner

    Bildnachweise