Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

16.09.2023 | Regular Paper

A new generalization of the zero-truncated negative binomial distribution by a Lagrange expansion with associated regression model and applications

verfasst von: Mohanan Monisha, Radhakumari Maya, Muhammed Rasheed Irshad, Christophe Chesneau, Damodaran Santhamani Shibu

Erschienen in: International Journal of Data Science and Analytics

Einloggen

Abstract

In this paper, we propose a new generalization of the zero-truncated negative binomial distribution using the Lagrange expansion of the second kind, which we call the Lagrangian zero-truncated negative binomial distribution (LZTNBD). The proposed distribution’s formulation and properties, including its mean, variance, skewness, kurtosis, factorial moment, and index of dispersion, are studied. Because of the various shapes of the hazard rate function, the new distribution reveals great flexibility. Using the equivalence theorem of the class of Lagrangian distribution, we show that the LZTNBD belongs to the Lagrangian family of the first kind. We estimate the unknown parameters of the LZTNBD using the method of maximum likelihood. The performance of the estimates is evaluated through a broad simulation study. We employ the mean-parameterized form of the LZTNBD to present a novel count regression model that is apt for both overdispersed and underdispersed situations. To further illustrate the relevance and applicability of the proposed model, real-world data sets are employed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aarset, M.V.: How to identify a bathtub hazard rate. IEEE Trans Reliability 36(1), 106–108 (1987) CrossRefMATH Aarset, M.V.: How to identify a bathtub hazard rate. IEEE Trans Reliability 36(1), 106–108 (1987) CrossRefMATH
2.
Zurück zum Zitat Adesina, O., Agunbiade, A., Oguntunde, P., Adesina, T., Oladeji, Nee: Bayesian models for zero truncated count data. Asian J Prob Statist. 4, 1–12 (2019) CrossRef Adesina, O., Agunbiade, A., Oguntunde, P., Adesina, T., Oladeji, Nee: Bayesian models for zero truncated count data. Asian J Prob Statist. 4, 1–12 (2019) CrossRef
6.
Zurück zum Zitat Consul, P.C., Famoye, F.: Dev Probability distribution and some of its applications. Adv Appl Stat 5(3), 17–30 (2005) MathSciNetMATH Consul, P.C., Famoye, F.: Dev Probability distribution and some of its applications. Adv Appl Stat 5(3), 17–30 (2005) MathSciNetMATH
7.
Zurück zum Zitat Consul, P. C., Famoye, F.: Lagrangian Probability Distributions Birkhäuser. New York, 2006a Consul, P. C., Famoye, F.: Lagrangian Probability Distributions Birkhäuser. New York, 2006a
8.
Zurück zum Zitat Consul, P.C., Famoye, F.: Harish probability distribution and its applications. J Stat Theory Appl 5(1), 17–30 (2006) MathSciNet Consul, P.C., Famoye, F.: Harish probability distribution and its applications. J Stat Theory Appl 5(1), 17–30 (2006) MathSciNet
9.
Zurück zum Zitat Consul, P.C., Shenton, L.R.: Use of Lagrange expansion for generating generalized probability distributions. J. SIAM Appl. Math. 23, 239–248 (1972) MathSciNetCrossRefMATH Consul, P.C., Shenton, L.R.: Use of Lagrange expansion for generating generalized probability distributions. J. SIAM Appl. Math. 23, 239–248 (1972) MathSciNetCrossRefMATH
10.
Zurück zum Zitat Ghouar, A., Zeghdoudi, H., Bouras, M.C.: New zero-truncated distribution: Properties and applications. Asian J Prob Stat 16(3), 54–66 (2022) CrossRef Ghouar, A., Zeghdoudi, H., Bouras, M.C.: New zero-truncated distribution: Properties and applications. Asian J Prob Stat 16(3), 54–66 (2022) CrossRef
11.
Zurück zum Zitat Gómez-Déniz, E., Calderíın-Ojeda, E.: Properties and applications of the Poisson-reciprocal inverse Gaussian distribution. J Stat Comput Simul 88(2), 269–289 (2018) MathSciNetCrossRefMATH Gómez-Déniz, E., Calderíın-Ojeda, E.: Properties and applications of the Poisson-reciprocal inverse Gaussian distribution. J Stat Comput Simul 88(2), 269–289 (2018) MathSciNetCrossRefMATH
12.
Zurück zum Zitat Grogger, J.T., Carson, R.T.: Models for truncated counts. J. Appl. Economet. 6(3), 225–238 (1991) CrossRef Grogger, J.T., Carson, R.T.: Models for truncated counts. J. Appl. Economet. 6(3), 225–238 (1991) CrossRef
13.
14.
Zurück zum Zitat Hussain, T.: A zero truncated discrete distribution: theory and applications to count data. Pak. J. Stat. Oper. Res. 16, 167–190 (2020) Hussain, T.: A zero truncated discrete distribution: theory and applications to count data. Pak. J. Stat. Oper. Res. 16, 167–190 (2020)
15.
Zurück zum Zitat Imoto, T., Ong, S.: A Lagrangian non central negative binomial distribution of the first kind. Commun Stat TheoryMethods 42, 466–477 (2013) MathSciNetCrossRefMATH Imoto, T., Ong, S.: A Lagrangian non central negative binomial distribution of the first kind. Commun Stat TheoryMethods 42, 466–477 (2013) MathSciNetCrossRefMATH
16.
Zurück zum Zitat Irshad, M.R., Chesneau, C., Shibu, D.S., Monisha, M., Maya, R.: Lagrangian zero truncated poisson distribution: properties regression model and applications. Symmetry 14(9), 1775 (2022) CrossRef Irshad, M.R., Chesneau, C., Shibu, D.S., Monisha, M., Maya, R.: Lagrangian zero truncated poisson distribution: properties regression model and applications. Symmetry 14(9), 1775 (2022) CrossRef
17.
Zurück zum Zitat Irshad, M.R., Chesneau, C., Shibu, D.S., Monisha, M., Maya, R.: A novel generalization of zero-truncated binomial distribution by Lagrangian approach with applications for the COVID-19 pandemic. Stats 5(4), 1004–1028 (2022) CrossRef Irshad, M.R., Chesneau, C., Shibu, D.S., Monisha, M., Maya, R.: A novel generalization of zero-truncated binomial distribution by Lagrangian approach with applications for the COVID-19 pandemic. Stats 5(4), 1004–1028 (2022) CrossRef
18.
Zurück zum Zitat Irshad, M.R., Monisha, M., Chesneau, C., Maya, R., Shibu, D.S.: A novel flexible class of intervened Poisson distribution by Lagrangian approach. Stats 6, 150–168 (2023) CrossRef Irshad, M.R., Monisha, M., Chesneau, C., Maya, R., Shibu, D.S.: A novel flexible class of intervened Poisson distribution by Lagrangian approach. Stats 6, 150–168 (2023) CrossRef
19.
Zurück zum Zitat Janardan, K.G.: A wider class of Lagrange distributions of the second kind. Commun Stat Theory Methods 26, 2087–2097 (1997) MathSciNetCrossRefMATH Janardan, K.G.: A wider class of Lagrange distributions of the second kind. Commun Stat Theory Methods 26, 2087–2097 (1997) MathSciNetCrossRefMATH
20.
Zurück zum Zitat Janardan, K.G., Rao, B.R.: Lagrangian distributions of second kind and weighted distributions. J. SIAM Appl. Math. 43, 302–313 (1983) MathSciNetCrossRefMATH Janardan, K.G., Rao, B.R.: Lagrangian distributions of second kind and weighted distributions. J. SIAM Appl. Math. 43, 302–313 (1983) MathSciNetCrossRefMATH
21.
Zurück zum Zitat Jenson, J.: Sur une identité d’Abel et sur d’autres formules analogues. Acta Math. 26, 307–318 (1902) MathSciNetCrossRef Jenson, J.: Sur une identité d’Abel et sur d’autres formules analogues. Acta Math. 26, 307–318 (1902) MathSciNetCrossRef
22.
25.
Zurück zum Zitat Riordan, J.: Combinatorial Identities. Wiley, New York (1968) MATH Riordan, J.: Combinatorial Identities. Wiley, New York (1968) MATH
27.
Zurück zum Zitat Seghier, F.Z., Zeghdoudi, H., Berkane, A.: A zero-truncated Poisson quasi-Lindley distribution with application. Int J Agric Stat Sci 16(2), 763–770 (2020) Seghier, F.Z., Zeghdoudi, H., Berkane, A.: A zero-truncated Poisson quasi-Lindley distribution with application. Int J Agric Stat Sci 16(2), 763–770 (2020)
28.
Zurück zum Zitat Shankar, R.: A zero-truncated Poisson-Amarendra distribution and its application. Int J Prob Stat 6(4), 82–92 (2017) Shankar, R.: A zero-truncated Poisson-Amarendra distribution and its application. Int J Prob Stat 6(4), 82–92 (2017)
29.
Zurück zum Zitat Shanker, R., Fesshaye, H., Selvaraj, S., Yemane, A.: On zero-truncation of Poisson and Poisson-Lindley distributions and their applications. Biom Biostat Int J 2(6), 168–181 (2015) Shanker, R., Fesshaye, H., Selvaraj, S., Yemane, A.: On zero-truncation of Poisson and Poisson-Lindley distributions and their applications. Biom Biostat Int J 2(6), 168–181 (2015)
30.
Zurück zum Zitat Shanmugam, R.: An intervened Poisson distribution and its medical application. Biometrics 41(4), 1025–1029 (1985) Shanmugam, R.: An intervened Poisson distribution and its medical application. Biometrics 41(4), 1025–1029 (1985)
31.
Zurück zum Zitat Singh, S.N., Yadava, K.N.: Trends in rural out-migration at household level. Rural. Demogr. 8(1), 53–61 (1981) Singh, S.N., Yadava, K.N.: Trends in rural out-migration at household level. Rural. Demogr. 8(1), 53–61 (1981)
32.
Zurück zum Zitat Wang, W., Famoye, F.: Modeling household fertility decision with generalized Poisson regression. J. Popul. Econ. 10(3), 273–283 (1997) CrossRef Wang, W., Famoye, F.: Modeling household fertility decision with generalized Poisson regression. J. Popul. Econ. 10(3), 273–283 (1997) CrossRef
33.
Zurück zum Zitat Willmot, G.E.: The Poisson-inverse Gaussian distribution as an alternative to the negative binomial. Scand. Actuar. J. 3(4), 113–127 (1987) MathSciNetCrossRef Willmot, G.E.: The Poisson-inverse Gaussian distribution as an alternative to the negative binomial. Scand. Actuar. J. 3(4), 113–127 (1987) MathSciNetCrossRef
34.
Zurück zum Zitat Xie, T.L., Aickin, M.: A truncated Poisson regression model with applications to occurrence of adenomatous polyps. Stat. Med. 16, 1845–1857 (1997) CrossRef Xie, T.L., Aickin, M.: A truncated Poisson regression model with applications to occurrence of adenomatous polyps. Stat. Med. 16, 1845–1857 (1997) CrossRef
35.
Zurück zum Zitat Zhao, W., Feng, Y., Li, Z.: Zero-truncated generalized Poisson regression model and its score tests. J East China Normal University Nat Sci 1, 17–23 (2010) MathSciNetMATH Zhao, W., Feng, Y., Li, Z.: Zero-truncated generalized Poisson regression model and its score tests. J East China Normal University Nat Sci 1, 17–23 (2010) MathSciNetMATH
Metadaten
Titel
A new generalization of the zero-truncated negative binomial distribution by a Lagrange expansion with associated regression model and applications
verfasst von
Mohanan Monisha
Radhakumari Maya
Muhammed Rasheed Irshad
Christophe Chesneau
Damodaran Santhamani Shibu
Publikationsdatum
16.09.2023
Verlag
Springer International Publishing
Erschienen in
International Journal of Data Science and Analytics
Print ISSN: 2364-415X
Elektronische ISSN: 2364-4168
DOI
https://doi.org/10.1007/s41060-023-00449-x