Skip to main content

15.02.2024

A New Hyperbolic Tangent Family of Distributions: Properties and Applications

verfasst von: Shahid Mohammad, Isabel Mendoza

Erschienen in: Annals of Data Science

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper introduces a new family of distributions called the hyperbolic tangent (HT) family. The cumulative distribution function of this model is defined using the standard hyperbolic tangent function. The fundamental properties of the distribution are thoroughly examined and presented. Additionally, an inverse exponential distribution is employed as a sub-model within the HT family, and its properties are also derived. The parameters of the HT family are estimated using the maximum likelihood method, and the performance of these estimators is assessed using a simulation approach. To demonstrate the significance and flexibility of the newly introduced family of distributions, two real data sets are utilized. These data sets serve as practical examples that showcase the applicability and usefulness of the HT family in real-world scenarios. By introducing the HT family, exploring its properties, employing the maximum likelihood estimation, and conducting simulations and real data analyses, this paper contributes to the advancement of statistical modeling and distribution theory.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alzaatreh A, Lee C, Famoye F (2013) A new method for generating families of continuous distributions. Metron 71(1):63–79MathSciNetCrossRef Alzaatreh A, Lee C, Famoye F (2013) A new method for generating families of continuous distributions. Metron 71(1):63–79MathSciNetCrossRef
2.
Zurück zum Zitat Alzaghal A, Famoye F, Lee C (2013) Exponentiated TX family of distributions with some applications. Int J Stat Probab 2(3):31CrossRef Alzaghal A, Famoye F, Lee C (2013) Exponentiated TX family of distributions with some applications. Int J Stat Probab 2(3):31CrossRef
3.
Zurück zum Zitat Cordeiro GM, de Castro M (2011) A new family of generalized distributions. J Stat Comput Simul 81(7):883–898MathSciNetCrossRef Cordeiro GM, de Castro M (2011) A new family of generalized distributions. J Stat Comput Simul 81(7):883–898MathSciNetCrossRef
4.
Zurück zum Zitat Eugene N, Lee C, Famoye F (2002) Beta-normal distribution and its applications. Commun Stat Theory Methods 31(4):497–512MathSciNetCrossRef Eugene N, Lee C, Famoye F (2002) Beta-normal distribution and its applications. Commun Stat Theory Methods 31(4):497–512MathSciNetCrossRef
5.
Zurück zum Zitat Bourguignon M, Silva RB, Cordeiro GM (2014) The Weibull-G family of probability distributions. J Data Sci 12(1):53–68MathSciNetCrossRef Bourguignon M, Silva RB, Cordeiro GM (2014) The Weibull-G family of probability distributions. J Data Sci 12(1):53–68MathSciNetCrossRef
6.
Zurück zum Zitat Sakthivel KM, Rajkumar J (2020) Hyperbolic cosine Rayleigh distribution and its application to breaking stress of carbon fibers. J Indian Soc Probab Stat 21:471–485CrossRef Sakthivel KM, Rajkumar J (2020) Hyperbolic cosine Rayleigh distribution and its application to breaking stress of carbon fibers. J Indian Soc Probab Stat 21:471–485CrossRef
8.
Zurück zum Zitat Brito E, Cordeiro GM, Yousof HM, Alizadeh M, Silva GO (2017) The Topp–Leone odd log-logistic family of distributions. J Stat Comput Simul 87(15):3040–3058MathSciNetCrossRef Brito E, Cordeiro GM, Yousof HM, Alizadeh M, Silva GO (2017) The Topp–Leone odd log-logistic family of distributions. J Stat Comput Simul 87(15):3040–3058MathSciNetCrossRef
9.
Zurück zum Zitat Haq MU, Elgarhy M (2018) The odd Fréchet-G family of probability distributions. J Stat Appl Probab 7(1):189–203CrossRef Haq MU, Elgarhy M (2018) The odd Fréchet-G family of probability distributions. J Stat Appl Probab 7(1):189–203CrossRef
10.
Zurück zum Zitat Marshall AW, Olkin I (1997) A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 84(3):641–652MathSciNetCrossRef Marshall AW, Olkin I (1997) A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 84(3):641–652MathSciNetCrossRef
11.
Zurück zum Zitat Alizadeh M, Cordeiro GM, Pinho LG, Ghosh I (2017) The Gompertz-G family of distributions. J Stat Theory Pract 11:179–207MathSciNetCrossRef Alizadeh M, Cordeiro GM, Pinho LG, Ghosh I (2017) The Gompertz-G family of distributions. J Stat Theory Pract 11:179–207MathSciNetCrossRef
12.
Zurück zum Zitat Zografos K, Balakrishnan N (2009) On families of beta-and generalized gamma-generated distributions and associated inference. Stat Methodol 6(4):344–362MathSciNetCrossRef Zografos K, Balakrishnan N (2009) On families of beta-and generalized gamma-generated distributions and associated inference. Stat Methodol 6(4):344–362MathSciNetCrossRef
13.
Zurück zum Zitat Bakr ME, Al-Babtain AA, Mahmood Z, Aldallal RA, Khosa SK, Abd El-Raouf MM, Hussam E, Gemeay AM (2022) Statistical modelling for a new family of generalized distributions with real data applications. Math Biosci Eng 19:8705–8740MathSciNetCrossRefPubMed Bakr ME, Al-Babtain AA, Mahmood Z, Aldallal RA, Khosa SK, Abd El-Raouf MM, Hussam E, Gemeay AM (2022) Statistical modelling for a new family of generalized distributions with real data applications. Math Biosci Eng 19:8705–8740MathSciNetCrossRefPubMed
14.
Zurück zum Zitat Muhammad M, Liu L, Abba B, Muhammad I, Bouchane M, Zhang H, Musa S (2023) A new extension of the topp-Leone-family of models with applications to real data. Ann Data Sci 10(1):225–50CrossRef Muhammad M, Liu L, Abba B, Muhammad I, Bouchane M, Zhang H, Musa S (2023) A new extension of the topp-Leone-family of models with applications to real data. Ann Data Sci 10(1):225–50CrossRef
15.
Zurück zum Zitat Ibrahim M, Ali MM, Yousof HM (2021) The discrete analogue of the Weibull G family: properties, different applications, Bayesian and non-Bayesian estimation methods. Ann Data Sci 1–38 Ibrahim M, Ali MM, Yousof HM (2021) The discrete analogue of the Weibull G family: properties, different applications, Bayesian and non-Bayesian estimation methods. Ann Data Sci 1–38
16.
Zurück zum Zitat Chakraborty S, Handique L, Jamal F (2020) The Kumaraswamy Poisson-G family of distribution: its properties and applications. Ann Data Sci 1–9 Chakraborty S, Handique L, Jamal F (2020) The Kumaraswamy Poisson-G family of distribution: its properties and applications. Ann Data Sci 1–9
17.
Zurück zum Zitat Anzagra L, Sarpong S, Nasiru S (2022) Odd Chen-G family of distributions. Ann Data Sci 9(2):369–91CrossRef Anzagra L, Sarpong S, Nasiru S (2022) Odd Chen-G family of distributions. Ann Data Sci 9(2):369–91CrossRef
18.
Zurück zum Zitat Ahmad Z (2020) The Zubair-G family of distributions: properties and applications. Ann Data Sci 7(2):195–208MathSciNetCrossRef Ahmad Z (2020) The Zubair-G family of distributions: properties and applications. Ann Data Sci 7(2):195–208MathSciNetCrossRef
19.
Zurück zum Zitat Reyad H, Korkmaz MÇ, Afify AZ, Hamedani GG, Othman S (2021) The Fréchet Topp Leone-G family of distributions: properties, characterizations and applications. Ann Data Sci 8:345–66CrossRef Reyad H, Korkmaz MÇ, Afify AZ, Hamedani GG, Othman S (2021) The Fréchet Topp Leone-G family of distributions: properties, characterizations and applications. Ann Data Sci 8:345–66CrossRef
20.
Zurück zum Zitat Ahmad Z (2020) A new generalized class of distributions: properties and estimation based on type-I censored samples. Ann Data Sci 7(2):243–56MathSciNetCrossRef Ahmad Z (2020) A new generalized class of distributions: properties and estimation based on type-I censored samples. Ann Data Sci 7(2):243–56MathSciNetCrossRef
21.
Zurück zum Zitat Ishaq AI, Abiodun AA (2020) The Maxwell–Weibull distribution in modeling lifetime datasets. Ann Data Sci 7(4):639–62CrossRef Ishaq AI, Abiodun AA (2020) The Maxwell–Weibull distribution in modeling lifetime datasets. Ann Data Sci 7(4):639–62CrossRef
22.
Zurück zum Zitat El-Sherpieny ES, Elsehetry MM (2019) Type ii Kumaraswamy half logistic family of distributions with applications to exponential model. Ann Data Sci 6:1–20CrossRef El-Sherpieny ES, Elsehetry MM (2019) Type ii Kumaraswamy half logistic family of distributions with applications to exponential model. Ann Data Sci 6:1–20CrossRef
23.
Zurück zum Zitat Alkhairy I, Nagy M, Muse AH, Hussam E (2021) The Arctan-X family of distributions: properties, simulation, and applications to actuarial sciences. Complexity 2021:1–4CrossRef Alkhairy I, Nagy M, Muse AH, Hussam E (2021) The Arctan-X family of distributions: properties, simulation, and applications to actuarial sciences. Complexity 2021:1–4CrossRef
24.
Zurück zum Zitat Wu X, Ahmad Z, Hussam E, Alhelali MH, Aldallal R, Almuqrin MA, Riad FH (2023) A new cosine-Weibull model: distributional properties with applications to basketball and medical sectors. Alex Eng J 66:751–767CrossRef Wu X, Ahmad Z, Hussam E, Alhelali MH, Aldallal R, Almuqrin MA, Riad FH (2023) A new cosine-Weibull model: distributional properties with applications to basketball and medical sectors. Alex Eng J 66:751–767CrossRef
25.
Zurück zum Zitat Tibor B, Béla GL, Csaba M, Zsolt U (1998) The hyperbolic tangent distribution family. Powder Technol 97(2):100–108CrossRef Tibor B, Béla GL, Csaba M, Zsolt U (1998) The hyperbolic tangent distribution family. Powder Technol 97(2):100–108CrossRef
26.
Zurück zum Zitat Ahmad A, Alsadat N, Atchade MN, ul Ain SQ, Gemeay AM, Meraou MA, Almetwally EM, Hossain MM, Hussam E (2023) New hyperbolic sine-generator with an example of Rayleigh distribution: simulation and data analysis in industry. Alex Eng J 73:415–426CrossRef Ahmad A, Alsadat N, Atchade MN, ul Ain SQ, Gemeay AM, Meraou MA, Almetwally EM, Hossain MM, Hussam E (2023) New hyperbolic sine-generator with an example of Rayleigh distribution: simulation and data analysis in industry. Alex Eng J 73:415–426CrossRef
27.
Zurück zum Zitat Kharazmi O, Saadatinik A, Tamandi M (2017) Hyperbolic sine-Weibull distribution and its applications. Int J Math Comput 28(3) Kharazmi O, Saadatinik A, Tamandi M (2017) Hyperbolic sine-Weibull distribution and its applications. Int J Math Comput 28(3)
28.
Zurück zum Zitat Ahmad Z (2019) The hyperbolic sine Rayleigh distribution with application to bladder cancer susceptibility. Ann Data Sci 6(2):211–222CrossRef Ahmad Z (2019) The hyperbolic sine Rayleigh distribution with application to bladder cancer susceptibility. Ann Data Sci 6(2):211–222CrossRef
29.
Zurück zum Zitat Sakthivel KM, Rajkumar J (2020) Hyperbolic cosine Rayleigh distribution and its application to breaking stress of carbon fibers. J Indian Soc Probab Stat 21:471–485CrossRef Sakthivel KM, Rajkumar J (2020) Hyperbolic cosine Rayleigh distribution and its application to breaking stress of carbon fibers. J Indian Soc Probab Stat 21:471–485CrossRef
30.
Zurück zum Zitat Kharazmi O, Saadatinik A (2016) Hyperbolic cosine-f family of distributions with an application to exponential distribution. Gazi Univ J Sci 29(4):811–829 Kharazmi O, Saadatinik A (2016) Hyperbolic cosine-f family of distributions with an application to exponential distribution. Gazi Univ J Sci 29(4):811–829
31.
Zurück zum Zitat Ampadu CB (2021) The hyperbolic Tan-X family of distributions: properties, application and characterization. J Stat Modell Theory Appl 2(1):1–13 Ampadu CB (2021) The hyperbolic Tan-X family of distributions: properties, application and characterization. J Stat Modell Theory Appl 2(1):1–13
32.
Zurück zum Zitat Oguntunde PE, Adejumo AO, Owoloko EA (2017) The Weibull-inverted exponential distribution: a generalization of the inverse exponential distribution. In: World congress on engineering Oguntunde PE, Adejumo AO, Owoloko EA (2017) The Weibull-inverted exponential distribution: a generalization of the inverse exponential distribution. In: World congress on engineering
33.
Zurück zum Zitat Oguntunde PE, Adejumo AO, Owoloko EA (2017) On the flexibility of the transmuted inverse exponential distribution. In: World congress on engineering Oguntunde PE, Adejumo AO, Owoloko EA (2017) On the flexibility of the transmuted inverse exponential distribution. In: World congress on engineering
34.
Zurück zum Zitat Aldahlan MA (2019) The inverse Weibull inverse exponential distribution with application. Int J Contemp Math Sci 14(1):17–30CrossRef Aldahlan MA (2019) The inverse Weibull inverse exponential distribution with application. Int J Contemp Math Sci 14(1):17–30CrossRef
35.
Zurück zum Zitat Ieren TG, Abdullahi J (2020) Properties and applications of a two-parameter inverse exponential distribution with a decreasing failure rate. Pak J Stat 36(3) Ieren TG, Abdullahi J (2020) Properties and applications of a two-parameter inverse exponential distribution with a decreasing failure rate. Pak J Stat 36(3)
36.
Zurück zum Zitat Basheer AM (2022) Marshall–Olkin alpha power inverse exponential distribution: properties and applications. Ann Data Sci 9(2):301–313CrossRef Basheer AM (2022) Marshall–Olkin alpha power inverse exponential distribution: properties and applications. Ann Data Sci 9(2):301–313CrossRef
37.
Zurück zum Zitat Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York
38.
Zurück zum Zitat Shi Y (2022) Advances in big data analytics: theory, algorithm and practice. Springer, SingaporeCrossRef Shi Y (2022) Advances in big data analytics: theory, algorithm and practice. Springer, SingaporeCrossRef
39.
Zurück zum Zitat Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef
40.
Zurück zum Zitat Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178CrossRef Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178CrossRef
41.
Zurück zum Zitat Guerra RR, Pena-Ramirez FA, Pena-Ramirez MR, Cordeiro GM (2020) A note on the density expansion and generating function of the beta Burr XII. Math Methods Appl Sci 43(4):1817–24MathSciNetCrossRef Guerra RR, Pena-Ramirez FA, Pena-Ramirez MR, Cordeiro GM (2020) A note on the density expansion and generating function of the beta Burr XII. Math Methods Appl Sci 43(4):1817–24MathSciNetCrossRef
42.
Zurück zum Zitat Hyndman RJ, Fan Y (1996) Sample quantiles in statistical packages. Am Stat 50(4):361–365 Hyndman RJ, Fan Y (1996) Sample quantiles in statistical packages. Am Stat 50(4):361–365
43.
Zurück zum Zitat Bader MG, Priest AM (1982) Statistical aspects of fibre and bundle strength in hybrid composites. In: Progress in science and engineering of composites, pp 1129–1136 Bader MG, Priest AM (1982) Statistical aspects of fibre and bundle strength in hybrid composites. In: Progress in science and engineering of composites, pp 1129–1136
44.
Zurück zum Zitat Hassan A, Dar SA, Para BA (2019) A new generalization of Ishita distribution: properties and applications. J Appl Prob Stat 13(2):53–67 Hassan A, Dar SA, Para BA (2019) A new generalization of Ishita distribution: properties and applications. J Appl Prob Stat 13(2):53–67
45.
Zurück zum Zitat Almetwally EM, Alharbi R, Alnagar D, Hafez EH (2021) A new inverted Topp–Leone distribution: applications to the COVID-19 mortality rate in two different countries. Axioms 10(1):25CrossRef Almetwally EM, Alharbi R, Alnagar D, Hafez EH (2021) A new inverted Topp–Leone distribution: applications to the COVID-19 mortality rate in two different countries. Axioms 10(1):25CrossRef
46.
Zurück zum Zitat Klakattawi H, Alsulami D, Elaal MA, Dey S, Baharith L (2022) A new generalized family of distributions based on combining Marshal–Olkin transformation with TX family. PLoS ONE 17(2):e0263673CrossRefPubMedPubMedCentral Klakattawi H, Alsulami D, Elaal MA, Dey S, Baharith L (2022) A new generalized family of distributions based on combining Marshal–Olkin transformation with TX family. PLoS ONE 17(2):e0263673CrossRefPubMedPubMedCentral
Metadaten
Titel
A New Hyperbolic Tangent Family of Distributions: Properties and Applications
verfasst von
Shahid Mohammad
Isabel Mendoza
Publikationsdatum
15.02.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00516-5