Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

11.11.2019 | Methodologies and Application | Ausgabe 13/2020

Soft Computing 13/2020

A new intelligent fault diagnosis method for bearing in different speeds based on the FDAF-score algorithm, binary particle swarm optimization, and support vector machine

Zeitschrift:
Soft Computing > Ausgabe 13/2020
Autoren:
Saeed Nezamivand Chegini, Ahmad Bagheri, Farid Najafi
Wichtige Hinweise
Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In this paper, a new hybrid intelligent technique is presented based on the improvement in the feature selection method for multi-fault classification. The bearing conditions used in this study include healthy condition, defective inner ring, defective outer ring, and the faulty rolling element at different rotating motor speeds. To form the feature matrix, at first, the vibration signals are decomposed using empirical mode decomposition and wavelet packet decomposition. Then, the time and frequency domain features are extracted from the raw signals and the components are obtained from the signal decomposition. The high-dimensional feature matrix leads to increasing the computational complexity and reducing the efficiency in the classification accuracy of faults. Therefore, in the first stage of the feature selection process, the redundant and unnecessary features are eliminated by the FDAF-score feature selection method and the preselected feature set is formed. The FDAF-score technique is a combination of both F-score and Fisher discriminate analysis (FDA) algorithms. Since there may exist the features that are not susceptible to the presence of faults, the binary particle swarm optimization (BPSO) algorithm and the support vector machine (SVM) are used to select the optimal features from the preselected features. The BPSO algorithm is used to determine the optimal feature set and SVM classifier parameters so that the predictive error of the bearing conditions and the number of selected features are minimized. The results obtained in this paper demonstrate that the selected features are able to differentiate the different bearing conditions at various speeds. Comparing the results of this article with other fault detection methods indicates the ability of the proposed method.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 13/2020

Soft Computing 13/2020 Zur Ausgabe

Premium Partner

    Bildnachweise