Skip to main content

06.07.2024

A New Kernel Density Estimation-Based Entropic Isometric Feature Mapping for Unsupervised Metric Learning

verfasst von: Alaor Cervati Neto, Alexandre Luís Magalhães Levada, Michel Ferreira Cardia Haddad

Erschienen in: Annals of Data Science

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Metric learning consists of designing adaptive distance functions that are well-suited to a specific dataset. Such tailored distance functions aim to deliver superior results compared to standard distance measures while performing machine learning tasks. In particular, the widely adopted Euclidean distance may be severely influenced due to noisy data and outliers, leading to suboptimal performance. In the present work, it is introduced a nonparametric isometric feature mapping (ISOMAP) method. The new algorithm is based on the kernel density estimation, exploring the relative entropy between probability density functions calculated in patches of the neighbourhood graph. The entropic neighbourhood network is built, where edges are weighted by a function of the relative entropies of the neighbouring patches instead of the Euclidean distance. A variety of datasets is considered in the analysis. The results indicate a superior performance compared to cutting edge manifold learning algorithms, such as the ISOMAP, unified manifold approximation and projection, and t-distributed stochastic neighbour embedding (t-SNE).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10. McGraw-Hill/Irwin, New York Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining, vol 10. McGraw-Hill/Irwin, New York
3.
Zurück zum Zitat Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer, LondonCrossRef Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer, LondonCrossRef
4.
Zurück zum Zitat Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4:149–178CrossRef Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4:149–178CrossRef
5.
Zurück zum Zitat Van Der Maaten L, Postma EO, Herik HJ (2009) Dimensionality reduction: a comparative review. J Mach Learn Res 10(66–71):1–41 Van Der Maaten L, Postma EO, Herik HJ (2009) Dimensionality reduction: a comparative review. J Mach Learn Res 10(66–71):1–41
6.
Zurück zum Zitat Fukunaga K (2013) Introduction to statistical pattern recognition. Elsevier, Amsterdam Fukunaga K (2013) Introduction to statistical pattern recognition. Elsevier, Amsterdam
7.
Zurück zum Zitat Wang F, Sun J (2015) Survey on distance metric learning and dimensionality reduction in data mining. Data Min Knowl Discov 29(2):534–564CrossRef Wang F, Sun J (2015) Survey on distance metric learning and dimensionality reduction in data mining. Data Min Knowl Discov 29(2):534–564CrossRef
8.
Zurück zum Zitat Li D, Tian Y (2018) Survey and experimental study on metric learning methods. Neural Netw 105:447–462CrossRef Li D, Tian Y (2018) Survey and experimental study on metric learning methods. Neural Netw 105:447–462CrossRef
9.
Zurück zum Zitat Wu W, Tao D, Li H, Yang Z, Cheng J (2021) Deep features for person re-identification on metric learning. Pattern Recognit 110:107424CrossRef Wu W, Tao D, Li H, Yang Z, Cheng J (2021) Deep features for person re-identification on metric learning. Pattern Recognit 110:107424CrossRef
10.
Zurück zum Zitat Tenenbaum JB, Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323CrossRef Tenenbaum JB, Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290:2319–2323CrossRef
11.
Zurück zum Zitat Cox T, Cox M (2000) Multidimensional Scaling (2nd ed.). Chapman and Hall/CRC Cox T, Cox M (2000) Multidimensional Scaling (2nd ed.). Chapman and Hall/CRC
12.
Zurück zum Zitat Choi H, Choi S (2007) Robust kernel isomap. Pattern Recognit 40(3):853–862CrossRef Choi H, Choi S (2007) Robust kernel isomap. Pattern Recognit 40(3):853–862CrossRef
13.
Zurück zum Zitat Shang F, Jiao LC, Shi J, Chai J (2011) Robust positive semidefinite L-isomap ensemble. Pattern Recognit Lett 32(4):640–649CrossRef Shang F, Jiao LC, Shi J, Chai J (2011) Robust positive semidefinite L-isomap ensemble. Pattern Recognit Lett 32(4):640–649CrossRef
14.
Zurück zum Zitat Gan Q, Shen F, Zhao J (2014) An extended isomap for manifold topology learning with SOINN landmarks. In: 22nd international conference on pattern recognition (ICPR 2014), pp 1579–1584 Gan Q, Shen F, Zhao J (2014) An extended isomap for manifold topology learning with SOINN landmarks. In: 22nd international conference on pattern recognition (ICPR 2014), pp 1579–1584
15.
Zurück zum Zitat Najafi A, Joudaki A, Fatemizadeh E (2016) Nonlinear dimensionality reduction via path-based isometric mapping. IEEE Trans Pattern Anal Mach Intell 38(7):1452–1464CrossRef Najafi A, Joudaki A, Fatemizadeh E (2016) Nonlinear dimensionality reduction via path-based isometric mapping. IEEE Trans Pattern Anal Mach Intell 38(7):1452–1464CrossRef
16.
Zurück zum Zitat Gajamannage K, Paffenroth R, Bollt EM (2019) A nonlinear dimensionality reduction framework using smooth geodesics. Pattern Recognit 87:226–236CrossRef Gajamannage K, Paffenroth R, Bollt EM (2019) A nonlinear dimensionality reduction framework using smooth geodesics. Pattern Recognit 87:226–236CrossRef
17.
Zurück zum Zitat Budninskiy M, Yin G, Feng L, Tong Y, Desbrun M (2019) Parallel transport unfolding: a connection-based manifold learning approach. SIAM J Appl Algebra Geom 3(2):266–291CrossRef Budninskiy M, Yin G, Feng L, Tong Y, Desbrun M (2019) Parallel transport unfolding: a connection-based manifold learning approach. SIAM J Appl Algebra Geom 3(2):266–291CrossRef
18.
Zurück zum Zitat Shamai G, Zibulevsky M, Kimmel R (2020) Efficient inter-geodesic distance computation and fast classical scaling. IEEE Trans Pattern Anal Mach Intell 42(1):74–85CrossRef Shamai G, Zibulevsky M, Kimmel R (2020) Efficient inter-geodesic distance computation and fast classical scaling. IEEE Trans Pattern Anal Mach Intell 42(1):74–85CrossRef
19.
Zurück zum Zitat Tasoulis S, Pavlidis NG, Roos T (2020) Nonlinear dimensionality reduction for clustering. Pattern Recognit 107:107508CrossRef Tasoulis S, Pavlidis NG, Roos T (2020) Nonlinear dimensionality reduction for clustering. Pattern Recognit 107:107508CrossRef
21.
22.
Zurück zum Zitat Maaten LJP, Hinton GE (2008) Visualizing high-dimensional data using t-SNE. J Mach Learn Res 9:2579–2605 Maaten LJP, Hinton GE (2008) Visualizing high-dimensional data using t-SNE. J Mach Learn Res 9:2579–2605
23.
Zurück zum Zitat Borg I, Groenen P (2005) Modern multidimensional scaling: theory and applications, 2nd edn. Springer, New York Borg I, Groenen P (2005) Modern multidimensional scaling: theory and applications, 2nd edn. Springer, New York
24.
Zurück zum Zitat Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27(3):832–837CrossRef Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27(3):832–837CrossRef
25.
Zurück zum Zitat Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076CrossRef Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076CrossRef
27.
Zurück zum Zitat Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall/CRC, New York Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall/CRC, New York
28.
Zurück zum Zitat Scott DW (1979) On optimal and data-based histograms. Biometrika 66(3):605–610CrossRef Scott DW (1979) On optimal and data-based histograms. Biometrika 66(3):605–610CrossRef
29.
Zurück zum Zitat Levada ALM (2020) Parametric PCA for unsupervised metric learning. Pattern Recognit Lett 135:425–430CrossRef Levada ALM (2020) Parametric PCA for unsupervised metric learning. Pattern Recognit Lett 135:425–430CrossRef
30.
Zurück zum Zitat Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326CrossRef Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326CrossRef
31.
Zurück zum Zitat Ham J, Lee DD, Mika S, Schölkopf B (2004) A kernel view of the dimensionality reduction of manifolds. In: Proceedings of the twenty-first international conference on machine learning (ICML ’04). Association for Computing Machinery, New York, NY, USA, p 47 Ham J, Lee DD, Mika S, Schölkopf B (2004) A kernel view of the dimensionality reduction of manifolds. In: Proceedings of the twenty-first international conference on machine learning (ICML ’04). Association for Computing Machinery, New York, NY, USA, p 47
Metadaten
Titel
A New Kernel Density Estimation-Based Entropic Isometric Feature Mapping for Unsupervised Metric Learning
verfasst von
Alaor Cervati Neto
Alexandre Luís Magalhães Levada
Michel Ferreira Cardia Haddad
Publikationsdatum
06.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00548-x