Skip to main content
Erschienen in: Quantum Information Processing 10/2019

01.10.2019

A new kind of universal and flexible quantum information splitting scheme with multi-coin quantum walks

verfasst von: Heng-Ji Li, Jian Li, Nan Xiang, Yan Zheng, Yu-Guang Yang, Mosayeb Naseri

Erschienen in: Quantum Information Processing | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum walks have received much attention due to their many potential applications for quantum information processing in recent years. In this paper, we propose a novel class of universal and flexible quantum information splitting scheme of an arbitrary qubit and d-dimensional qudit via using the model of quantum walks with multiple coins for the first time. Firstly, for splitting an arbitrary qubit into N parts, quantum walks on the line with \(N+1\) coins, which are homogeneous and position dependent, are used, respectively. In addition, it can be generalized to the model of quantum walks on the cycle for fulfilling this scheme. Secondly, for distributing an unknown d-dimensional qudit into N parts, quantum walks with \(N+1\) coins are used on the complete graph and the d-regular graph, respectively. Our scheme has two significant merits: (i) It is universal and flexible, which implies that based on the different quantum walks structures, not only an unknown qubit but also d-dimensional qudit can be shared; (ii) the prior entangled state is not necessarily prepared and the entanglement measurement is not needed, which make this scheme more convenient for the agents in applications on a network. This work opens wider application purpose of quantum walks and provides inspiration to explore the potential applications of quantum walks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)ADSCrossRef Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)ADSCrossRef
2.
Zurück zum Zitat Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)ADSCrossRef Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)ADSCrossRef
4.
Zurück zum Zitat Gamble, J.K., Friesen, M., Zhou, D., Joynt, R., Coppersmith, S.: Two-particle quantum walks applied to the graph isomorphism problem. Phys. Rev. A 81(5), 052313 (2010)ADSCrossRef Gamble, J.K., Friesen, M., Zhou, D., Joynt, R., Coppersmith, S.: Two-particle quantum walks applied to the graph isomorphism problem. Phys. Rev. A 81(5), 052313 (2010)ADSCrossRef
6.
Zurück zum Zitat Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81(4), 042330 (2010)ADSMathSciNetCrossRef Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81(4), 042330 (2010)ADSMathSciNetCrossRef
7.
Zurück zum Zitat Štefaňák, M., Skoupỳ, S.: Perfect state transfer by means of discrete-time quantum walk on complete bipartite graphs. Quantum Inf. Process. 16(3), 72 (2017)ADSMathSciNetMATHCrossRef Štefaňák, M., Skoupỳ, S.: Perfect state transfer by means of discrete-time quantum walk on complete bipartite graphs. Quantum Inf. Process. 16(3), 72 (2017)ADSMathSciNetMATHCrossRef
8.
Zurück zum Zitat Innocenti, L., Majury, H., Giordani, T., Spagnolo, N., Sciarrino, F., Paternostro, M., Ferraro, A.: Quantum state engineering using one-dimensional discrete-time quantum walks. Phys. Rev. A 96(6), 062326 (2017)ADSCrossRef Innocenti, L., Majury, H., Giordani, T., Spagnolo, N., Sciarrino, F., Paternostro, M., Ferraro, A.: Quantum state engineering using one-dimensional discrete-time quantum walks. Phys. Rev. A 96(6), 062326 (2017)ADSCrossRef
9.
Zurück zum Zitat Rohde, P.P., Fitzsimons, J.F., Gilchrist, A.: Quantum walks with encrypted data. Phys. Rev. Lett. 109(15), 150501 (2012)ADSCrossRef Rohde, P.P., Fitzsimons, J.F., Gilchrist, A.: Quantum walks with encrypted data. Phys. Rev. Lett. 109(15), 150501 (2012)ADSCrossRef
11.
Zurück zum Zitat Li, H.-J., Chen, X.-B., Wang, Y.-L., Hou, Y.-Y., Li, J.: A new kind of flexible quantum teleportation of an arbitrary multi-qubit state by multi-walker quantum walks. Quantum. Inf. Process. 18(9), 266 (2019)ADSCrossRef Li, H.-J., Chen, X.-B., Wang, Y.-L., Hou, Y.-Y., Li, J.: A new kind of flexible quantum teleportation of an arbitrary multi-qubit state by multi-walker quantum walks. Quantum. Inf. Process. 18(9), 266 (2019)ADSCrossRef
12.
Zurück zum Zitat Vlachou, C., Krawec, W., Mateus, P., Paunković, N., Souto, A.: Quantum key distribution with quantum walks. Quantum Inf. Process. 17(11), 288 (2018)ADSMathSciNetMATHCrossRef Vlachou, C., Krawec, W., Mateus, P., Paunković, N., Souto, A.: Quantum key distribution with quantum walks. Quantum Inf. Process. 17(11), 288 (2018)ADSMathSciNetMATHCrossRef
13.
Zurück zum Zitat Yang, Y., Yang, J., Zhou, Y., Shi, W., Chen, X., Li, J., Zuo, H.: Quantum network communication: a discrete-time quantum-walk approach. Sci. China Inf. Sci. 61(4), 042501 (2018)MathSciNetCrossRef Yang, Y., Yang, J., Zhou, Y., Shi, W., Chen, X., Li, J., Zuo, H.: Quantum network communication: a discrete-time quantum-walk approach. Sci. China Inf. Sci. 61(4), 042501 (2018)MathSciNetCrossRef
14.
Zurück zum Zitat Chen, X.B., Wang, Y.L., Xu, G., Yang, Y.X.: Quantum network communication with a novel discrete-time quantum walk. IEEE Access 7, 13634 (2019)CrossRef Chen, X.B., Wang, Y.L., Xu, G., Yang, Y.X.: Quantum network communication with a novel discrete-time quantum walk. IEEE Access 7, 13634 (2019)CrossRef
16.
17.
Zurück zum Zitat Liu, C., Petulante, N.: One-dimensional quantum random walks with two entangled coins. Phys. Rev. A 79(3), 032312 (2009)ADSCrossRef Liu, C., Petulante, N.: One-dimensional quantum random walks with two entangled coins. Phys. Rev. A 79(3), 032312 (2009)ADSCrossRef
18.
19.
Zurück zum Zitat Konno, N., Łuczak, T., Segawa, E.: Limit measures of inhomogeneous discrete-time quantum walks in one dimension. Quantum Inf. Process. 12(1), 33 (2013)ADSMathSciNetMATHCrossRef Konno, N., Łuczak, T., Segawa, E.: Limit measures of inhomogeneous discrete-time quantum walks in one dimension. Quantum Inf. Process. 12(1), 33 (2013)ADSMathSciNetMATHCrossRef
20.
Zurück zum Zitat Zhang, R., Xue, P., Twamley, J.: One-dimensional quantum walks with single-point phase defects. Phys. Rev. A 89(4), 042317 (2014)ADSCrossRef Zhang, R., Xue, P., Twamley, J.: One-dimensional quantum walks with single-point phase defects. Phys. Rev. A 89(4), 042317 (2014)ADSCrossRef
22.
Zurück zum Zitat Montero, M.: Invariance in quantum walks with time-dependent coin operators. Phys. Rev. A 90(6), 062312 (2014)ADSCrossRef Montero, M.: Invariance in quantum walks with time-dependent coin operators. Phys. Rev. A 90(6), 062312 (2014)ADSCrossRef
23.
24.
Zurück zum Zitat Montero, M.: Quantum and random walks as universal generators of probability distributions. Phys. Rev. A 95(6), 062326 (2017)ADSMathSciNetCrossRef Montero, M.: Quantum and random walks as universal generators of probability distributions. Phys. Rev. A 95(6), 062326 (2017)ADSMathSciNetCrossRef
26.
Zurück zum Zitat Xu, G., Chen, X.B., Dou, Z., Yang, Y.X., Li, Z.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14(8), 2959 (2015)ADSMathSciNetMATHCrossRef Xu, G., Chen, X.B., Dou, Z., Yang, Y.X., Li, Z.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14(8), 2959 (2015)ADSMathSciNetMATHCrossRef
27.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetMATHCrossRef Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetMATHCrossRef
28.
Zurück zum Zitat Xu, G., Chen, X.B., Dou, Z., Li, J., Liu, X., Li, Z.P.: Novel criteria for deterministic remote state preparation via the entangled six-qubit state. Entropy 18(7), 267 (2016)ADSMathSciNetCrossRef Xu, G., Chen, X.B., Dou, Z., Li, J., Liu, X., Li, Z.P.: Novel criteria for deterministic remote state preparation via the entangled six-qubit state. Entropy 18(7), 267 (2016)ADSMathSciNetCrossRef
29.
Zurück zum Zitat Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16(10), 244 (2017)ADSMATHCrossRef Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16(10), 244 (2017)ADSMATHCrossRef
31.
Zurück zum Zitat Xu, G., Chen, X.B., Li, J., Wang, C., Yang, Y.X., Li, Z.: Network coding for quantum cooperative multicast. Quantum Inf. Process. 14(11), 4297 (2015)ADSMathSciNetMATHCrossRef Xu, G., Chen, X.B., Li, J., Wang, C., Yang, Y.X., Li, Z.: Network coding for quantum cooperative multicast. Quantum Inf. Process. 14(11), 4297 (2015)ADSMathSciNetMATHCrossRef
32.
Zurück zum Zitat Li, J., Chen, X.B., Xu, G., Yang, Y.X., Li, Z.P.: Perfect quantum network coding independent of classical network solutions. IEEE Commun. Lett. 19(2), 115 (2015)ADSCrossRef Li, J., Chen, X.B., Xu, G., Yang, Y.X., Li, Z.P.: Perfect quantum network coding independent of classical network solutions. IEEE Commun. Lett. 19(2), 115 (2015)ADSCrossRef
33.
Zurück zum Zitat Li, Z.Z., Xu, G., Chen, X.B., Sun, X.M., Yang, Y.X.: Multi-user quantum wireless network communication based on multi-qubit GHZ state. IEEE Commun. Lett. 20(12), 2470 (2016)CrossRef Li, Z.Z., Xu, G., Chen, X.B., Sun, X.M., Yang, Y.X.: Multi-user quantum wireless network communication based on multi-qubit GHZ state. IEEE Commun. Lett. 20(12), 2470 (2016)CrossRef
34.
Zurück zum Zitat Li, J., Chen, X.B., Sun, X.M., Li, Z.P., Yang, Y.X.: Quantum network coding for multi-unicast problem based on 2D and 3D cluster states. Sci. China Inf. Sci. 59(4), 042301 (2016)CrossRef Li, J., Chen, X.B., Sun, X.M., Li, Z.P., Yang, Y.X.: Quantum network coding for multi-unicast problem based on 2D and 3D cluster states. Sci. China Inf. Sci. 59(4), 042301 (2016)CrossRef
35.
Zurück zum Zitat Li, Z.Z., Xu, G., Chen, X.B., Qu, Z.G., Niu, X.X., Yang, Y.X.: Efficient quantum state transmission via perfect quantum network coding. Sci. China Inf. Sci. 62(1), 12501 (2019)CrossRef Li, Z.Z., Xu, G., Chen, X.B., Qu, Z.G., Niu, X.X., Yang, Y.X.: Efficient quantum state transmission via perfect quantum network coding. Sci. China Inf. Sci. 62(1), 12501 (2019)CrossRef
36.
Zurück zum Zitat Xu, G., Xiao, K., Li, Z., Niu, X.X., Ryan, M.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. CMC-Comput. Mater. Continua 58(3), 809 (2019)CrossRef Xu, G., Xiao, K., Li, Z., Niu, X.X., Ryan, M.: Controlled secure direct communication protocol via the three-qubit partially entangled set of states. CMC-Comput. Mater. Continua 58(3), 809 (2019)CrossRef
37.
Zurück zum Zitat Wei, Z.H., Chen, X.B., Niu, X.X., Yang, Y.X.: The quantum steganography protocol via quantum noisy channels. Int. J. Theor. Phys. 54(8), 2505 (2015)MathSciNetMATHCrossRef Wei, Z.H., Chen, X.B., Niu, X.X., Yang, Y.X.: The quantum steganography protocol via quantum noisy channels. Int. J. Theor. Phys. 54(8), 2505 (2015)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Di Franco, C., Mc Gettrick, M., Busch, T.: Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin. Phys. Rev. Lett. 106(8), 080502 (2011)CrossRef Di Franco, C., Mc Gettrick, M., Busch, T.: Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin. Phys. Rev. Lett. 106(8), 080502 (2011)CrossRef
41.
Zurück zum Zitat Li, J., Li, N., Zhang, Y., Wen, S., Du, W., Chen, W., Ma, W.: A survey on quantum cryptography. Chin. J. Electron. 27(2), 223 (2018)CrossRef Li, J., Li, N., Zhang, Y., Wen, S., Du, W., Chen, W., Ma, W.: A survey on quantum cryptography. Chin. J. Electron. 27(2), 223 (2018)CrossRef
42.
Zurück zum Zitat Chen, X.B., Su, Y., Xu, G., Sun, Y., Yang, Y.X.: Quantum state secure transmission in network communications. Inf. Sci. 276, 363 (2014)MathSciNetMATHCrossRef Chen, X.B., Su, Y., Xu, G., Sun, Y., Yang, Y.X.: Quantum state secure transmission in network communications. Inf. Sci. 276, 363 (2014)MathSciNetMATHCrossRef
43.
Zurück zum Zitat Wang, J.T., Xu, G., Chen, X.B., Sun, X.M., Jia, H.Y.: Local distinguishability of Dicke states in quantum secret sharing. Phys. Lett. A 381(11), 998 (2017)ADSMathSciNetMATHCrossRef Wang, J.T., Xu, G., Chen, X.B., Sun, X.M., Jia, H.Y.: Local distinguishability of Dicke states in quantum secret sharing. Phys. Lett. A 381(11), 998 (2017)ADSMathSciNetMATHCrossRef
44.
Zurück zum Zitat Chen, X.B., Tang, X., Xu, G., Dou, Z., Chen, Y.L., Yang, Y.X.: Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Inf. Process. 17(9), 225 (2018)ADSMathSciNetMATHCrossRef Chen, X.B., Tang, X., Xu, G., Dou, Z., Chen, Y.L., Yang, Y.X.: Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Inf. Process. 17(9), 225 (2018)ADSMathSciNetMATHCrossRef
45.
Zurück zum Zitat Chen, X.-B., Sun, Y.-R., Xu, G., Yang, Y.-X.: Quantum homomorphic encryption scheme with flexible number of evaluator based on (k, n)-threshold quantum state sharing. Inf. Sci. 501(10), 172–181 (2019)MathSciNetCrossRef Chen, X.-B., Sun, Y.-R., Xu, G., Yang, Y.-X.: Quantum homomorphic encryption scheme with flexible number of evaluator based on (k, n)-threshold quantum state sharing. Inf. Sci. 501(10), 172–181 (2019)MathSciNetCrossRef
46.
Zurück zum Zitat Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903 (2004)ADSCrossRef Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903 (2004)ADSCrossRef
47.
Zurück zum Zitat Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420 (2004)ADSMathSciNetMATHCrossRef Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420 (2004)ADSMathSciNetMATHCrossRef
48.
Zurück zum Zitat Li, D.F., Wang, R.J., Zhang, F.L., Deng, F.H., Baagyere, E.: Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state. Quantum Inf. Process. 14(3), 1103 (2015)ADSMathSciNetMATHCrossRef Li, D.F., Wang, R.J., Zhang, F.L., Deng, F.H., Baagyere, E.: Quantum information splitting of arbitrary two-qubit state by using four-qubit cluster state and Bell-state. Quantum Inf. Process. 14(3), 1103 (2015)ADSMathSciNetMATHCrossRef
49.
Zurück zum Zitat Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74(5), 054303 (2006)ADSCrossRef Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74(5), 054303 (2006)ADSCrossRef
50.
Zurück zum Zitat Chen, X., Jiang, M., Chen, X.P., Li, H.: Quantum state sharing of an arbitrary three-qubit state by using three sets of W-class states. Quantum Inf. Process. 12(7), 2405 (2013)ADSMathSciNetMATHCrossRef Chen, X., Jiang, M., Chen, X.P., Li, H.: Quantum state sharing of an arbitrary three-qubit state by using three sets of W-class states. Quantum Inf. Process. 12(7), 2405 (2013)ADSMathSciNetMATHCrossRef
51.
Zurück zum Zitat Muralidharan, S., Panigrahi, P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)ADSCrossRef Muralidharan, S., Panigrahi, P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)ADSCrossRef
52.
Zurück zum Zitat Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297 (2011)MathSciNetMATHCrossRef Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297 (2011)MathSciNetMATHCrossRef
53.
Zurück zum Zitat Tao, Y., Tian, D., Hu, M., Qin, M.: Quantum state sharing of an arbitrary qudit state by using nonmaximally generalized GHZ state. Chin. Phys. B 17(2), 624 (2008)ADSCrossRef Tao, Y., Tian, D., Hu, M., Qin, M.: Quantum state sharing of an arbitrary qudit state by using nonmaximally generalized GHZ state. Chin. Phys. B 17(2), 624 (2008)ADSCrossRef
54.
55.
56.
Zurück zum Zitat Qin, H., Tso, R., Dai, Y.: Multi-dimensional quantum state sharing based on quantum Fourier transform. Quantum Inf. Process. 17(3), 48 (2018)ADSMathSciNetMATHCrossRef Qin, H., Tso, R., Dai, Y.: Multi-dimensional quantum state sharing based on quantum Fourier transform. Quantum Inf. Process. 17(3), 48 (2018)ADSMathSciNetMATHCrossRef
57.
Zurück zum Zitat Shi, R., Huang, L., Yang, W., Zhong, H.: Asymmetric five-party quantum state sharing of an arbitrary m-qubit state. Eur. Phys. J. D 57(2), 287 (2010)ADSCrossRef Shi, R., Huang, L., Yang, W., Zhong, H.: Asymmetric five-party quantum state sharing of an arbitrary m-qubit state. Eur. Phys. J. D 57(2), 287 (2010)ADSCrossRef
58.
Zurück zum Zitat Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10(1), 53 (2011)MathSciNetMATHCrossRef Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10(1), 53 (2011)MathSciNetMATHCrossRef
59.
Zurück zum Zitat Maitra, A., De, S.J., Paul, G., Pal, A.K.: Proposal for quantum rational secret sharing. Phys. Rev. A 92(2), 022305 (2015)ADSCrossRef Maitra, A., De, S.J., Paul, G., Pal, A.K.: Proposal for quantum rational secret sharing. Phys. Rev. A 92(2), 022305 (2015)ADSCrossRef
60.
Zurück zum Zitat Dou, Z., Xu, G., Chen, X.B., Liu, X., Yang, Y.X.: A secure rational quantum state sharing protocol. Sci. China Inf. Sci. 61(2), 022501 (2018)MathSciNetCrossRef Dou, Z., Xu, G., Chen, X.B., Liu, X., Yang, Y.X.: A secure rational quantum state sharing protocol. Sci. China Inf. Sci. 61(2), 022501 (2018)MathSciNetCrossRef
61.
Zurück zum Zitat Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283(6), 1196 (2010)ADSCrossRef Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283(6), 1196 (2010)ADSCrossRef
62.
Zurück zum Zitat Xu, G., Wang, C., Yang, Y.X.: Hierarchical quantum information splitting of an arbitrary two-qubit state via the cluster state. Quantum. Inf. Process. 13(1), 43–57 (2014)ADSMATHCrossRef Xu, G., Wang, C., Yang, Y.X.: Hierarchical quantum information splitting of an arbitrary two-qubit state via the cluster state. Quantum. Inf. Process. 13(1), 43–57 (2014)ADSMATHCrossRef
63.
Zurück zum Zitat Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM. pp. 37–49 (2001) Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM. pp. 37–49 (2001)
64.
Zurück zum Zitat Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM. pp. 50–59 (2001) Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM. pp. 50–59 (2001)
Metadaten
Titel
A new kind of universal and flexible quantum information splitting scheme with multi-coin quantum walks
verfasst von
Heng-Ji Li
Jian Li
Nan Xiang
Yan Zheng
Yu-Guang Yang
Mosayeb Naseri
Publikationsdatum
01.10.2019
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 10/2019
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2422-3

Weitere Artikel der Ausgabe 10/2019

Quantum Information Processing 10/2019 Zur Ausgabe

Neuer Inhalt