Skip to main content
Erschienen in:

23.03.2019

A New Lane-Changing Model with Consideration of Driving Style

verfasst von: Guoqing Ren, Yong Zhang, Hao Liu, Ke Zhang, Yongli Hu

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The lane-changing model is a hot spot in the field of traffic research, and there are already a lot of free lane-changing model established mathematical statistical methods or machine learning algorithm. However, these models don’t consider the driver’s driving style to the free lane-changing, and the accuracy of these models is low. This paper considers the driver’s driving style and proposes a new free lane-changing model based on machine learning. The new model splits the sample data into three driving styles: cautious, stable and radical. This paper selects the most effective multilayer perceptron model by comparing different machine learning methods based on the NGSIM trajectory data. In the analysis of the final accuracy of this paper, it can be seen that the new model has a great improvement in accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Yang, Q., Koutsopoulos, H.N.: A microscopic traffic simulator for evaluation of dynamic traffic management systems[J]. Transportation Research Part C: Emerging Technologies. 4(3), 113–129 (1996)CrossRef Yang, Q., Koutsopoulos, H.N.: A microscopic traffic simulator for evaluation of dynamic traffic management systems[J]. Transportation Research Part C: Emerging Technologies. 4(3), 113–129 (1996)CrossRef
2.
Zurück zum Zitat Yongfeng, Z., Jun, Z., Zhongke, S.: Research on design of expressway acceleration lane length and merging model of vehicle [J]. China Journal of Highwayand Transport. 22(2), 93–97 (2009) Yongfeng, Z., Jun, Z., Zhongke, S.: Research on design of expressway acceleration lane length and merging model of vehicle [J]. China Journal of Highwayand Transport. 22(2), 93–97 (2009)
3.
Zurück zum Zitat Rongben, W., Feng, Y., Gaojian, C., et al.: Analysis on lane- changingsafety of vehicle [J]. Journal of Jilin University:Engineering and Technology Edition. 35(2), 179–182 (2005) Rongben, W., Feng, Y., Gaojian, C., et al.: Analysis on lane- changingsafety of vehicle [J]. Journal of Jilin University:Engineering and Technology Edition. 35(2), 179–182 (2005)
4.
Zurück zum Zitat Hidas, P.: Modeling vehicle interactions in microscopicsimulation of merging and weaving and weavin[J]. Transportation Research Part C: EmergingTechnologies. 13(1), 37–62 (2005)CrossRef Hidas, P.: Modeling vehicle interactions in microscopicsimulation of merging and weaving and weavin[J]. Transportation Research Part C: EmergingTechnologies. 13(1), 37–62 (2005)CrossRef
5.
Zurück zum Zitat Toledo, T., Koutsopoulos, H.N., Ben-Akiva, M.: Integrated driving behavior modeling[J]. Transportation Research Part C: Emerging Technologies. 15(2), 96–112 (2007)CrossRef Toledo, T., Koutsopoulos, H.N., Ben-Akiva, M.: Integrated driving behavior modeling[J]. Transportation Research Part C: Emerging Technologies. 15(2), 96–112 (2007)CrossRef
6.
Zurück zum Zitat Kita H.: Effects of merging lane length on the merging behavior at expressway on-ramps[J]. Transportation and Traffic Theory (1993) Kita H.: Effects of merging lane length on the merging behavior at expressway on-ramps[J]. Transportation and Traffic Theory (1993)
7.
Zurück zum Zitat Meng, Q., Weng, J.: Cellular automata model for work zone traffic[J]. J. Transp. Res Board. 2188(1), 131–139 (2010) Meng, Q., Weng, J.: Cellular automata model for work zone traffic[J]. J. Transp. Res Board. 2188(1), 131–139 (2010)
8.
Zurück zum Zitat Kita, H.: A merging-giveway interaction model of cars in a merging section: a game theoretic analysis[J]. Transp. Res. A Policy Pract. 33(3), 305–312 (1999)CrossRef Kita, H.: A merging-giveway interaction model of cars in a merging section: a game theoretic analysis[J]. Transp. Res. A Policy Pract. 33(3), 305–312 (1999)CrossRef
10.
Zurück zum Zitat Hunt, J.G., Lyons, G.D.: Modelling dual carriageway lane changing using neural networks [J]. Transportation Research Part C Emerging Technologies. 2(4), 231–245 (1994)CrossRef Hunt, J.G., Lyons, G.D.: Modelling dual carriageway lane changing using neural networks [J]. Transportation Research Part C Emerging Technologies. 2(4), 231–245 (1994)CrossRef
11.
Zurück zum Zitat Zheng, J., Suzuki, K., Fujita, M.: Predicting driver’s lane-changing decisions using a neural network model [J]. Simul Model Pract Theory. 42, 73–83 (2014)CrossRef Zheng, J., Suzuki, K., Fujita, M.: Predicting driver’s lane-changing decisions using a neural network model [J]. Simul Model Pract Theory. 42, 73–83 (2014)CrossRef
12.
Zurück zum Zitat Meng, Q., Weng, J.: Classification and regression tree approach for predicting Drivers' merging behavior in short-term work zone merging areas [J]. J. Transp. Eng. 138(8), 1062–1070 (2012)CrossRef Meng, Q., Weng, J.: Classification and regression tree approach for predicting Drivers' merging behavior in short-term work zone merging areas [J]. J. Transp. Eng. 138(8), 1062–1070 (2012)CrossRef
13.
Zurück zum Zitat Ziegel E R.: The Elements of Statistical Learning [J]. Springer, (2001) Ziegel E R.: The Elements of Statistical Learning [J]. Springer, (2001)
14.
Zurück zum Zitat Zhao, W., Zhang, S., Li, W.H.: High performance spatial index based on k-means algorithm [J]. Comput. Eng. 34(20), 4–6 (2008) Zhao, W., Zhang, S., Li, W.H.: High performance spatial index based on k-means algorithm [J]. Comput. Eng. 34(20), 4–6 (2008)
15.
Zurück zum Zitat Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks : the state of the art[J]. Int. J. Forecast. 14(1), 35–62 (1998)CrossRef Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks : the state of the art[J]. Int. J. Forecast. 14(1), 35–62 (1998)CrossRef
16.
Zurück zum Zitat Srinivasulu, S., Jain, A.: A comparative analysis of training methods for artificial neural network rainfall–runoff models[J]. Appl. Soft Comput. 6(3), 295–306 (2006)CrossRef Srinivasulu, S., Jain, A.: A comparative analysis of training methods for artificial neural network rainfall–runoff models[J]. Appl. Soft Comput. 6(3), 295–306 (2006)CrossRef
17.
Zurück zum Zitat Panda, S.S., Chakraborty, D., Pal, S.K.: Flank wear prediction in drilling using back propagation neural network and radial basis function network [J]. Appl. Soft Comput. 8(2), 858–871 (2008)CrossRef Panda, S.S., Chakraborty, D., Pal, S.K.: Flank wear prediction in drilling using back propagation neural network and radial basis function network [J]. Appl. Soft Comput. 8(2), 858–871 (2008)CrossRef
18.
Zurück zum Zitat Lee, W.M., Yuen, K.K., Lo, S.M., et al.: Prediction of sprinkler actuation time using the artificial neural networks [J]. Journal of Building Surveying. 2(1), 10–13 (2000) Lee, W.M., Yuen, K.K., Lo, S.M., et al.: Prediction of sprinkler actuation time using the artificial neural networks [J]. Journal of Building Surveying. 2(1), 10–13 (2000)
19.
Zurück zum Zitat Lee, E.W.M., Yuen, R.K.K., Lo, S.M., et al.: A novel artificial neural network fire model for prediction of thermal interface location in single compartment fire [J]. Fire Saf. J. 39(03), 67–87 (2004)CrossRef Lee, E.W.M., Yuen, R.K.K., Lo, S.M., et al.: A novel artificial neural network fire model for prediction of thermal interface location in single compartment fire [J]. Fire Saf. J. 39(03), 67–87 (2004)CrossRef
20.
Zurück zum Zitat Yuen, R.K.K., Lee, E.W.M., Lim, C.P.: Fusion of GRNN and FA for online Noisy data regression[J]. Neural. Process. Lett. 19(3), 227–241 (2004)CrossRef Yuen, R.K.K., Lee, E.W.M., Lim, C.P.: Fusion of GRNN and FA for online Noisy data regression[J]. Neural. Process. Lett. 19(3), 227–241 (2004)CrossRef
21.
Zurück zum Zitat Yuen, R.K.K., Lee, E.W.M., Lo, S.M., et al.: Prediction of temperature and velocity profiles in a single compartment fire by an improved neural network analysis [J]. Fire Saf. J. 41(6), 478–485 (2006)CrossRef Yuen, R.K.K., Lee, E.W.M., Lo, S.M., et al.: Prediction of temperature and velocity profiles in a single compartment fire by an improved neural network analysis [J]. Fire Saf. J. 41(6), 478–485 (2006)CrossRef
Metadaten
Titel
A New Lane-Changing Model with Consideration of Driving Style
verfasst von
Guoqing Ren
Yong Zhang
Hao Liu
Ke Zhang
Yongli Hu
Publikationsdatum
23.03.2019
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 3/2019
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-019-00180-7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.