Skip to main content
Erschienen in: Wireless Networks 8/2020

10.07.2020

A new lossy compression algorithm for wireless sensor networks using Bayesian predictive coding

verfasst von: Chen Chen, Limao Zhang, Robert Lee Kong Tiong

Erschienen in: Wireless Networks | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) generate a variety of continuous data streams. To reduce data storage and transmission cost, compression is recommended to be applied to the data streams from every single sensor node. Local compression falls into two categories: lossless and lossy. Lossy compression techniques are generally preferable for sensors in commercial nodes than the lossless ones as they provide a better compression ratio at a lower computational cost. However, the traditional approaches for data compression in WSNs are sensitive to sensor accuracy. They are less efficient when there are abnormal and faulty measurements or missing data. This paper proposes a new lossy compression approach using the Bayesian predictive coding (BPC). Instead of the original signals, predictive coding transmits the error terms which are calculated by subtracting the predicted signals from the actual signals to the receiving node. Its compression performance depends on the accuracy of the adopted prediction technique. BPC combines the Bayesian inference with the predictive coding. Prediction is made by the Bayesian inference instead of regression models as in traditional predictive coding. In this way, it can utilize prior information and provide inferences that are conditional on the data without reliance on asymptotic approximation. Experimental tests show that the BPC is the same efficient as the linear predictive coding when handling independent signals which follow a stationary probability distribution. More than that, the BPC is more robust toward occasionally erroneous or missing sensor data. The proposed approach is based on the physical knowledge of the phenomenon in applications. It can be considered as a complementary approach to the existing lossy compression family for WSNs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akansu, A. N., Serdijn, W. A., & Selesnick, I. W. (2010). Emerging applications of wavelets: A review. Physical Communication, 3(1), 1–18.CrossRef Akansu, A. N., Serdijn, W. A., & Selesnick, I. W. (2010). Emerging applications of wavelets: A review. Physical Communication, 3(1), 1–18.CrossRef
2.
Zurück zum Zitat Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H.-P. (2016). Rate-distortion balanced data compression for wireless sensor networks. IEEE Sensors Journal, 16(12), 5072–5083.CrossRef Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H.-P. (2016). Rate-distortion balanced data compression for wireless sensor networks. IEEE Sensors Journal, 16(12), 5072–5083.CrossRef
3.
Zurück zum Zitat Banerjee, R., & Bit, S. D. (2017). An energy efficient image compression scheme for wireless multimedia sensor network using curve fitting technique. Wireless Networks, 25(1), 167–183.CrossRef Banerjee, R., & Bit, S. D. (2017). An energy efficient image compression scheme for wireless multimedia sensor network using curve fitting technique. Wireless Networks, 25(1), 167–183.CrossRef
4.
Zurück zum Zitat Buratti, C., Conti, A., Dardari, D., & Verdone, R. (2009). An overview on wireless sensor networks technology and evolution. Sensors, 9, 6869–6896.CrossRef Buratti, C., Conti, A., Dardari, D., & Verdone, R. (2009). An overview on wireless sensor networks technology and evolution. Sensors, 9, 6869–6896.CrossRef
5.
Zurück zum Zitat Capo-Chichi, E.P., Guyennet, H., Friedt, J.-M. (2009) K-RLE: A new data compression algorithm for wireless sensor network. In 3rd international conference on sensor technologies and applications, Athens, Glyfada, Greece. Capo-Chichi, E.P., Guyennet, H., Friedt, J.-M. (2009) K-RLE: A new data compression algorithm for wireless sensor network. In 3rd international conference on sensor technologies and applications, Athens, Glyfada, Greece.
6.
Zurück zum Zitat Chen, S., Liu, J., Wang, K., & Wu, M. (2019). A hierarchical adaptive spatio-temporal data compression scheme for wireless sensor networks. Wireless Networks, 25(1), 429–438.CrossRef Chen, S., Liu, J., Wang, K., & Wu, M. (2019). A hierarchical adaptive spatio-temporal data compression scheme for wireless sensor networks. Wireless Networks, 25(1), 429–438.CrossRef
7.
Zurück zum Zitat Chen, Z., Guiling, S., Weixiang, L., Yi, G., & Lequn, L. (2009). Research on data compression algorithm based on prediction coding for wireless sensor network nodes. International Forum on Information Technology and Applications, 1, 283–286. Chen, Z., Guiling, S., Weixiang, L., Yi, G., & Lequn, L. (2009). Research on data compression algorithm based on prediction coding for wireless sensor network nodes. International Forum on Information Technology and Applications, 1, 283–286.
8.
Zurück zum Zitat Dan, L., Qian, Z., Zhi, Z., & Baoling, L. (2016). Cluster-based energy-efficient transmission using a new hybrid compressed sensing in WSN. IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2016, 372–376.CrossRef Dan, L., Qian, Z., Zhi, Z., & Baoling, L. (2016). Cluster-based energy-efficient transmission using a new hybrid compressed sensing in WSN. IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2016, 372–376.CrossRef
9.
Zurück zum Zitat Dang, T., Bulusu, N., & Feng, W.-C. (2013). Robust data compression for irregular wireless sensor networks using logical mapping. London: Hindawi Publishing Corporation.CrossRef Dang, T., Bulusu, N., & Feng, W.-C. (2013). Robust data compression for irregular wireless sensor networks using logical mapping. London: Hindawi Publishing Corporation.CrossRef
10.
Zurück zum Zitat Davenport, M. A., Laska, J. N., Treichler, J. R., & Baraniuk, R. G. (2012). The Pros and Cons of Compressive Sensing for Wideband Signal Acquisition: Noise Folding versus Dynamic Range. IEEE Transactions on Signal Processing, 60(9), 4628–4642.MathSciNetMATHCrossRef Davenport, M. A., Laska, J. N., Treichler, J. R., & Baraniuk, R. G. (2012). The Pros and Cons of Compressive Sensing for Wideband Signal Acquisition: Noise Folding versus Dynamic Range. IEEE Transactions on Signal Processing, 60(9), 4628–4642.MathSciNetMATHCrossRef
11.
Zurück zum Zitat Deligiannakis, A., & Kotidis, Y. (2011). Detecting proximity events in sensor networks. Information Systems, 36(7), 1044–1063.CrossRef Deligiannakis, A., & Kotidis, Y. (2011). Detecting proximity events in sensor networks. Information Systems, 36(7), 1044–1063.CrossRef
12.
Zurück zum Zitat Diamond, S. M., & Ceruti, M. G. (2007). Application of wireless sensor network to military information integration. In 2007 5th IEEE international conference on industrial informatics, Vienna, Austria, 2007. Diamond, S. M., & Ceruti, M. G. (2007). Application of wireless sensor network to military information integration. In 2007 5th IEEE international conference on industrial informatics, Vienna, Austria, 2007.
13.
Zurück zum Zitat Dumas, T., Roumy, A., & Guillemot, C. (2020). Context-Adaptive Neural Network-Based Prediction for Image Compression. IEEE Transactions on Image Processing, 29, 679–693.MathSciNetCrossRef Dumas, T., Roumy, A., & Guillemot, C. (2020). Context-Adaptive Neural Network-Based Prediction for Image Compression. IEEE Transactions on Image Processing, 29, 679–693.MathSciNetCrossRef
14.
Zurück zum Zitat Fu, H., Liang, F., Lei, B., Bian, N., Zhang, Q., Akbari, M., et al. (2020). Improved hybrid layered image compression using deep learning and traditional codecs. Signal Processing: Image Communication, 82, 115774. Fu, H., Liang, F., Lei, B., Bian, N., Zhang, Q., Akbari, M., et al. (2020). Improved hybrid layered image compression using deep learning and traditional codecs. Signal Processing: Image Communication, 82, 115774.
15.
Zurück zum Zitat Hollmig, G., Horne, M., Leimkühler, S., Schöll, F., Strunk, C., Englhardt, A., et al. (2017). An evaluation of combinations of lossy compression and change-detection approaches for time-series data. Information Systems, 65, 65–77.CrossRef Hollmig, G., Horne, M., Leimkühler, S., Schöll, F., Strunk, C., Englhardt, A., et al. (2017). An evaluation of combinations of lossy compression and change-detection approaches for time-series data. Information Systems, 65, 65–77.CrossRef
16.
Zurück zum Zitat Hosseini-Nejad, H., Jannesari, A., & Sodagar, A. M. (2012). Data compression based on discrete cosine transform for implantable neural recording microsystems. IEEE International Conference on Circuits and Systems (ICCAS), 2012, 209–213.CrossRef Hosseini-Nejad, H., Jannesari, A., & Sodagar, A. M. (2012). Data compression based on discrete cosine transform for implantable neural recording microsystems. IEEE International Conference on Circuits and Systems (ICCAS), 2012, 209–213.CrossRef
17.
Zurück zum Zitat Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9), 1098–1101.MATHCrossRef Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes. Proceedings of the IRE, 40(9), 1098–1101.MATHCrossRef
18.
Zurück zum Zitat Iqbal, S., Abdullah, A. H., Ahsan, F., & Qureshi, K. N. (2017). Critical link identification and prioritization using Bayesian theorem for dynamic channel assignment in wireless mesh networks. Wireless Networks, 24, 2685–2697.CrossRef Iqbal, S., Abdullah, A. H., Ahsan, F., & Qureshi, K. N. (2017). Critical link identification and prioritization using Bayesian theorem for dynamic channel assignment in wireless mesh networks. Wireless Networks, 24, 2685–2697.CrossRef
19.
Zurück zum Zitat Karson, M. (2014). Handbook of methods of applied statistics. Volume I: Techniques of computation descriptive methods, and statistical inference. Volume II: Planning of surveys and experiments. I. M. Chakravarti, R. G. Laha, and J. Roy, New York, John Wiley; 1967, $9.00, Publications of the American Statistical Association 63(323), 1047–1049. Karson, M. (2014). Handbook of methods of applied statistics. Volume I: Techniques of computation descriptive methods, and statistical inference. Volume II: Planning of surveys and experiments. I. M. Chakravarti, R. G. Laha, and J. Roy, New York, John Wiley; 1967, $9.00, Publications of the American Statistical Association 63(323), 1047–1049.
20.
Zurück zum Zitat Kaushik, C. S. H., Gautam, T., & Elamaran, V. (2014). A tutorial review on discrete fourier transform with data compression application. International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), 2014, 1–6. Kaushik, C. S. H., Gautam, T., & Elamaran, V. (2014). A tutorial review on discrete fourier transform with data compression application. International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), 2014, 1–6.
21.
Zurück zum Zitat Kemda, L. E., & Huang, C.-K. (2015). Value-at-risk for the USD/ZAR exchange rate: The Variance-Gamma model. South African Journal of Economic and Management Sciences, 18(4), 551–566.CrossRef Kemda, L. E., & Huang, C.-K. (2015). Value-at-risk for the USD/ZAR exchange rate: The Variance-Gamma model. South African Journal of Economic and Management Sciences, 18(4), 551–566.CrossRef
22.
Zurück zum Zitat Kim, A., Han, J., Yu, T., & Kim, D. S. (2015). Hybrid wireless sensor network for building energy management systems based on the 2.4 GHz and 400 MHz bands. Information Systems, 48, 320–326.CrossRef Kim, A., Han, J., Yu, T., & Kim, D. S. (2015). Hybrid wireless sensor network for building energy management systems based on the 2.4 GHz and 400 MHz bands. Information Systems, 48, 320–326.CrossRef
24.
Zurück zum Zitat Liu, L., & Shimamura, T. (2013). A noise compensation LPC method based on pitch synchronous analysis for speech. Journal of Signal Processing, 17(6), 283–292.CrossRef Liu, L., & Shimamura, T. (2013). A noise compensation LPC method based on pitch synchronous analysis for speech. Journal of Signal Processing, 17(6), 283–292.CrossRef
25.
Zurück zum Zitat Luo, C., Wu, F., Sun, J., & Chen, C.W. (2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking, Beijing, China (pp. 145–156). Luo, C., Wu, F., Sun, J., & Chen, C.W. (2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking, Beijing, China (pp. 145–156).
26.
Zurück zum Zitat Luo, J., Xiang, L., & Rosenberg, C. (2010). Does compressed sensing improve the throughput of wireless sensor networks?. In 2010 IEEE international conference on communications, IEEE, pp. 1–6. Luo, J., Xiang, L., & Rosenberg, C. (2010). Does compressed sensing improve the throughput of wireless sensor networks?. In 2010 IEEE international conference on communications, IEEE, pp. 1–6.
27.
Zurück zum Zitat Makhoul, J. (1975). Linear prediction: A tutorial review. Proceedings of the IEEE, 63, 561–580.CrossRef Makhoul, J. (1975). Linear prediction: A tutorial review. Proceedings of the IEEE, 63, 561–580.CrossRef
28.
Zurück zum Zitat Marcelloni, F., & Vecchio, M. (2010). Enabling energy-efficient and lossy-aware data compression in wireless sensor networks by multi-objective evolutionary optimization. Information Sciences, 180, 1924–1941.CrossRef Marcelloni, F., & Vecchio, M. (2010). Enabling energy-efficient and lossy-aware data compression in wireless sensor networks by multi-objective evolutionary optimization. Information Sciences, 180, 1924–1941.CrossRef
29.
Zurück zum Zitat Marcelloni, F., & Vecchio, M. (2010). A two-objective evolutionary approach to design lossy compression algorithms for tiny nodes of wireless sensor networks. Evolutionary Intelligence, 3, 137–153.CrossRef Marcelloni, F., & Vecchio, M. (2010). A two-objective evolutionary approach to design lossy compression algorithms for tiny nodes of wireless sensor networks. Evolutionary Intelligence, 3, 137–153.CrossRef
30.
Zurück zum Zitat Noel, A. B., & Abdaoui, A. (2017). Structural health monitoring using wireless sensor networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 19(3), 1403–1423.CrossRef Noel, A. B., & Abdaoui, A. (2017). Structural health monitoring using wireless sensor networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 19(3), 1403–1423.CrossRef
31.
Zurück zum Zitat Pan, Y., Zhang, L., Wu, X., Zhang, K., & Skibniewski, M. J. (2019). Structural health monitoring and assessment using wavelet packet energy spectrum. Safety Science, 120, 652–665.CrossRef Pan, Y., Zhang, L., Wu, X., Zhang, K., & Skibniewski, M. J. (2019). Structural health monitoring and assessment using wavelet packet energy spectrum. Safety Science, 120, 652–665.CrossRef
32.
Zurück zum Zitat Rajarshi Middya, N. C. M. K. N. (2017). Compressive sensing in wireless sensor networks - a survey. IETE Technical Review, 34(6), 642–654.CrossRef Rajarshi Middya, N. C. M. K. N. (2017). Compressive sensing in wireless sensor networks - a survey. IETE Technical Review, 34(6), 642–654.CrossRef
33.
Zurück zum Zitat Razavi, S.A., Ollila, E., & Koivunen, V. (2012). Robust greedy algorithms for compressed sensing. In 2012 Proceedings of the 20th European signal processing conference (EUSIPCO) (pp. 969–973). Razavi, S.A., Ollila, E., & Koivunen, V. (2012). Robust greedy algorithms for compressed sensing. In 2012 Proceedings of the 20th European signal processing conference (EUSIPCO) (pp. 969–973).
34.
35.
Zurück zum Zitat Schoellhammer, T., Greenstein, B., Osterweil, E., Wimbrow, M. & Estrin, D. (2004). Lightweight temporal compression of microclimate datasets. In 29th annual IEEE international conference on local computer networks, Tampa, FL, USA. Schoellhammer, T., Greenstein, B., Osterweil, E., Wimbrow, M. & Estrin, D. (2004). Lightweight temporal compression of microclimate datasets. In 29th annual IEEE international conference on local computer networks, Tampa, FL, USA.
36.
Zurück zum Zitat Sharma, M. (2010). Compression using Huffman coding. International Journal of Computer Science and Network Security, 10(5), 133–141. Sharma, M. (2010). Compression using Huffman coding. International Journal of Computer Science and Network Security, 10(5), 133–141.
37.
Zurück zum Zitat Sheltami, T., Musaddiq, M., & Shakshuki, E. (2016). Data compression techniques in wireless sensor networks. Future Generation Computer Systems, 64, 151–162.CrossRef Sheltami, T., Musaddiq, M., & Shakshuki, E. (2016). Data compression techniques in wireless sensor networks. Future Generation Computer Systems, 64, 151–162.CrossRef
38.
Zurück zum Zitat Srisooksai, T., Keamarungsi, K., Lamsrichan, P., & Araki, K. (2012). Practical data compression in wireless sensor networks: A survey. Journal of Network and Computer Applications, 35, 37–59.CrossRef Srisooksai, T., Keamarungsi, K., Lamsrichan, P., & Araki, K. (2012). Practical data compression in wireless sensor networks: A survey. Journal of Network and Computer Applications, 35, 37–59.CrossRef
39.
Zurück zum Zitat Tandon, P., Huggins, P., Maclachlan, R., Dubrawski, A., Nelson, K., & Labov, S. (2016). Detection of radioactive sources in urban scenes using Bayesian aggregation of data from mobile spectrometers. Information Systems, 57, 195–206.CrossRef Tandon, P., Huggins, P., Maclachlan, R., Dubrawski, A., Nelson, K., & Labov, S. (2016). Detection of radioactive sources in urban scenes using Bayesian aggregation of data from mobile spectrometers. Information Systems, 57, 195–206.CrossRef
40.
41.
Zurück zum Zitat Welch, A. (1984). Technique for high-performance data compression. Computer, 17(6), 8–19.CrossRef Welch, A. (1984). Technique for high-performance data compression. Computer, 17(6), 8–19.CrossRef
42.
Zurück zum Zitat Wheeler, A. (2007). Commercial applications of wireless sensor networks using ZigBee. IEEE Communications Magazine, 45(4), 70–77.CrossRef Wheeler, A. (2007). Commercial applications of wireless sensor networks using ZigBee. IEEE Communications Magazine, 45(4), 70–77.CrossRef
43.
Zurück zum Zitat Wu, X., Liu, H., Zhang, L., Skibniewski, M. J., Deng, Q., & Teng, J. (2015). A dynamic Bayesian network based approach to safety decision support in tunnel construction. Reliability Engineering and System Safety, 134, 157–168.CrossRef Wu, X., Liu, H., Zhang, L., Skibniewski, M. J., Deng, Q., & Teng, J. (2015). A dynamic Bayesian network based approach to safety decision support in tunnel construction. Reliability Engineering and System Safety, 134, 157–168.CrossRef
44.
Zurück zum Zitat Xiong, K., Zhao, G., Shi, G., & Wang, Y. (2019). A convex optimization algorithm for compressed sensing in a complex domain: The complex-valued split bregman method. Sensors Basel, Switzerlad, 19(20), 4540.CrossRef Xiong, K., Zhao, G., Shi, G., & Wang, Y. (2019). A convex optimization algorithm for compressed sensing in a complex domain: The complex-valued split bregman method. Sensors Basel, Switzerlad, 19(20), 4540.CrossRef
45.
Zurück zum Zitat Xu, X., Chen, H., Lian, C., & Li, D. (2018). Learning-based predictive control for discrete-time nonlinear systems with stochastic disturbances. IEEE Transactions on Neural Networks and Learning Systems, 29(12), 6202–6213.MathSciNetCrossRef Xu, X., Chen, H., Lian, C., & Li, D. (2018). Learning-based predictive control for discrete-time nonlinear systems with stochastic disturbances. IEEE Transactions on Neural Networks and Learning Systems, 29(12), 6202–6213.MathSciNetCrossRef
46.
Zurück zum Zitat Zhan, L.-T., Chen, C., Wang, Y., & Chen, Y.-M. (2017). Failure probability assessment and parameter sensitivity analysis of a contaminant’s transit time through a compacted clay liner. Computers and Geotechnics, 86, 230–242.CrossRef Zhan, L.-T., Chen, C., Wang, Y., & Chen, Y.-M. (2017). Failure probability assessment and parameter sensitivity analysis of a contaminant’s transit time through a compacted clay liner. Computers and Geotechnics, 86, 230–242.CrossRef
47.
Zurück zum Zitat Zhang, L., Ekyalimpa, R., Hague, S., Werner, M., & AbouRizk, S. (2015) Updating geological conditions using Bayes theorem and Markov chain. In 2015 winter simulation conference (WSC), IEEE (pp. 3367–3378). Zhang, L., Ekyalimpa, R., Hague, S., Werner, M., & AbouRizk, S. (2015) Updating geological conditions using Bayes theorem and Markov chain. In 2015 winter simulation conference (WSC), IEEE (pp. 3367–3378).
48.
Zurück zum Zitat Zhang, L., Wen, M., & Ashuri, B. (2018). BIM log mining: Measuring design productivity. Journal of Computing in Civil Engineering, 32(1), 04017071.CrossRef Zhang, L., Wen, M., & Ashuri, B. (2018). BIM log mining: Measuring design productivity. Journal of Computing in Civil Engineering, 32(1), 04017071.CrossRef
49.
Zurück zum Zitat Zhang, L., Wu, X., Qin, Y., Skibniewski, M. J., & Liu, W. (2016). Towards a fuzzy Bayesian network based approach for safety risk analysis of tunnel-induced pipeline damage. Risk Analysis, 36(2), 278–301.CrossRef Zhang, L., Wu, X., Qin, Y., Skibniewski, M. J., & Liu, W. (2016). Towards a fuzzy Bayesian network based approach for safety risk analysis of tunnel-induced pipeline damage. Risk Analysis, 36(2), 278–301.CrossRef
50.
Zurück zum Zitat Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory, 24(5), 530–536.MathSciNetMATHCrossRef Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory, 24(5), 530–536.MathSciNetMATHCrossRef
Metadaten
Titel
A new lossy compression algorithm for wireless sensor networks using Bayesian predictive coding
verfasst von
Chen Chen
Limao Zhang
Robert Lee Kong Tiong
Publikationsdatum
10.07.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 8/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02425-w

Weitere Artikel der Ausgabe 8/2020

Wireless Networks 8/2020 Zur Ausgabe

Neuer Inhalt