Skip to main content
Erschienen in:

09.06.2024

A New Low-Power Non-uniform Sample and Hold Circuit for Biomedical Signal Processing Applications

verfasst von: Sara Bagher Nasrabadi, Mehdi Dolatshahi, Sayed Mohammadali Zanjani, Hossein Pourghassem

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 9/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a new non-uniform differential sample and hold circuit is proposed using low-distortion sampling switches for biomedical signal processing applications. The proposed design can be used in the biomedical low-frequency range with low-power consumption which makes the proposed design a good candidate for bio-signal sampling purposes. The body biasing technique is employed to reduce the distortion of the sampling switches. Moreover, to reduce the required sampled-data storage capacity, the signal slope rate detection is used to predict the input signal frequency and variations in order to adjust the proper sampling rate of the proposed non-uniform sampling circuit. To realize the proposed design, a capacitive digital-to-analog converter is used to sample the slope changes of signals at two sampling frequencies of 1000 and 100 Hz. The circuit simulation results using 0.18 μm CMOS technology parameters at 1 V supply voltage, indicate the saving in power consumption value up to 57.5% in comparison with other conventional designs. Additionally, the output signal of the proposed circuit can be reconstructed with a percentage root-mean-square difference factor of as low as 2.1%, a mean square error of 0.0025, and a signal-to-noise ratio value of 79.34 dB.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat A. Anita, S.R. Paulson, D.J. Moni, Asynchronous adaptive threshold level crossing ADC for wearable ECG sensors. J. Med. Syst. 43, 1–18 (2019) A. Anita, S.R. Paulson, D.J. Moni, Asynchronous adaptive threshold level crossing ADC for wearable ECG sensors. J. Med. Syst. 43, 1–18 (2019)
2.
Zurück zum Zitat A. Ballo, A.D. Grasso, G. Palumbo, Current-mode body-biased switch to increase performance of linear charge pumps. Int. J. Circuit Theory Appl. 48(11), 1864–1872 (2020)CrossRef A. Ballo, A.D. Grasso, G. Palumbo, Current-mode body-biased switch to increase performance of linear charge pumps. Int. J. Circuit Theory Appl. 48(11), 1864–1872 (2020)CrossRef
3.
Zurück zum Zitat M. Ben-Romdhane, A. Maalej, M. Tlili, C. Rebai, F. Rivet, D. Dallet, Event-driven ECG sensor in healthcare devices for data transfer optimization. Arab. J. Sci. Eng. 45(8), 6361–6387 (2020)CrossRef M. Ben-Romdhane, A. Maalej, M. Tlili, C. Rebai, F. Rivet, D. Dallet, Event-driven ECG sensor in healthcare devices for data transfer optimization. Arab. J. Sci. Eng. 45(8), 6361–6387 (2020)CrossRef
4.
Zurück zum Zitat S.L. Chen, J.F. Villaverde, H.-Y. Lee, D.W.-Y. Chung, T.-L. Lin, C.-H. Tseng, K.-A. Lo, A power-efficient mixed-signal smart ADC design with adaptive resolution and variable sampling rate for low-power applications. IEEE Sens. J. 17(11), 3461–3469 (2017)CrossRef S.L. Chen, J.F. Villaverde, H.-Y. Lee, D.W.-Y. Chung, T.-L. Lin, C.-H. Tseng, K.-A. Lo, A power-efficient mixed-signal smart ADC design with adaptive resolution and variable sampling rate for low-power applications. IEEE Sens. J. 17(11), 3461–3469 (2017)CrossRef
5.
Zurück zum Zitat Y. Chiu, C.W. Tsang, B. Nikolic´, P.R. Gray, Least mean square adaptive digital background calibration of pipelined analog-to-digital converters. IEEE Trans. Circuits Syst. I Regul. Pap. 51(1), 38 (2004)CrossRef Y. Chiu, C.W. Tsang, B. Nikolic´, P.R. Gray, Least mean square adaptive digital background calibration of pipelined analog-to-digital converters. IEEE Trans. Circuits Syst. I Regul. Pap. 51(1), 38 (2004)CrossRef
6.
Zurück zum Zitat K. Ding, K. Cai, Y. Han, Design of a high-speed sample-and-hold circuit using a substrate-biasing-effect attenuated T switch. Microelectron. J. 41(12), 809–814 (2010)CrossRef K. Ding, K. Cai, Y. Han, Design of a high-speed sample-and-hold circuit using a substrate-biasing-effect attenuated T switch. Microelectron. J. 41(12), 809–814 (2010)CrossRef
7.
Zurück zum Zitat A. Ghanavati, M. Saberi, A fully differential and power-efficient difference integrating ADC. Circuits Syst. Signal Process. 39, 3804–3818 (2020)CrossRef A. Ghanavati, M. Saberi, A fully differential and power-efficient difference integrating ADC. Circuits Syst. Signal Process. 39, 3804–3818 (2020)CrossRef
8.
Zurück zum Zitat S. Guni, A. Oliveira, D.R. Fuhrmann, Comparative study of sigma delta and non-uniform sampling A/D converters. AEU-Int. J. Electron. Commun. 83, 295–302 (2018)CrossRef S. Guni, A. Oliveira, D.R. Fuhrmann, Comparative study of sigma delta and non-uniform sampling A/D converters. AEU-Int. J. Electron. Commun. 83, 295–302 (2018)CrossRef
10.
Zurück zum Zitat H. Imanpoor, M. Mehranpouy, P. Torkzadeh, A. Jannesari, A 12-bit 100 MS/s pipelined ADC without using front-end SHA. AEU-Int. J. Electron. Commun. 86, 142–153 (2018)CrossRef H. Imanpoor, M. Mehranpouy, P. Torkzadeh, A. Jannesari, A 12-bit 100 MS/s pipelined ADC without using front-end SHA. AEU-Int. J. Electron. Commun. 86, 142–153 (2018)CrossRef
11.
Zurück zum Zitat S. Kazeminia, A.L. Shahsavar, Dual-path linearization technique for bandwidth enhancement in SAH circuits. AEU-Int. J. Electron. Commun. 110, 152864 (2019)CrossRef S. Kazeminia, A.L. Shahsavar, Dual-path linearization technique for bandwidth enhancement in SAH circuits. AEU-Int. J. Electron. Commun. 110, 152864 (2019)CrossRef
12.
Zurück zum Zitat T.-S. Lee, C.-C. Lu, A 330MHz 11 bit 26.4 mW CMOS low-hold-pedestal fully differential track-and-hold circuit. Circuits Syst. Signal Process. 30, 883–898 (2011)CrossRef T.-S. Lee, C.-C. Lu, A 330MHz 11 bit 26.4 mW CMOS low-hold-pedestal fully differential track-and-hold circuit. Circuits Syst. Signal Process. 30, 883–898 (2011)CrossRef
15.
Zurück zum Zitat H. Mahmoodian, M. Dolatshahi, An energy-efficient sample-and-hold circuit in CNTFET technology for high-speed applications. Analog Integr. Circuits Signal Process. 103(1), 209–221 (2020)CrossRef H. Mahmoodian, M. Dolatshahi, An energy-efficient sample-and-hold circuit in CNTFET technology for high-speed applications. Analog Integr. Circuits Signal Process. 103(1), 209–221 (2020)CrossRef
18.
Zurück zum Zitat T. Moradi Khanshan, M. Nematzade, K. Hadidi, A. Khoei, Z. Daie Koozehkanani, J. Sobhi, Very linear open-loop CMOS sample-and-hold structure for high precision and high speed ADCs. Analog Integr. Circuits Signal Process. 88, 23–30 (2016)CrossRef T. Moradi Khanshan, M. Nematzade, K. Hadidi, A. Khoei, Z. Daie Koozehkanani, J. Sobhi, Very linear open-loop CMOS sample-and-hold structure for high precision and high speed ADCs. Analog Integr. Circuits Signal Process. 88, 23–30 (2016)CrossRef
19.
Zurück zum Zitat M. Mousazadeh, K. Hadidi, A. Khoei, A novel open-loop high-speed CMOS sample-and-hold. AEU-Int. J. Electron. Commun. 62(8), 588–596 (2008)CrossRef M. Mousazadeh, K. Hadidi, A. Khoei, A novel open-loop high-speed CMOS sample-and-hold. AEU-Int. J. Electron. Commun. 62(8), 588–596 (2008)CrossRef
20.
Zurück zum Zitat M. Nasserian, A. Peiravi, F. Moradi, An adaptive-resolution signal-specific ADC for sensor-interface applications. Analog Integr. Circuits Signal Process. 98, 125–135 (2019)CrossRef M. Nasserian, A. Peiravi, F. Moradi, An adaptive-resolution signal-specific ADC for sensor-interface applications. Analog Integr. Circuits Signal Process. 98, 125–135 (2019)CrossRef
21.
Zurück zum Zitat H. Pahlavanzadeh, M.A. Karami, An energy efficient symmetrical DAC switching scheme for single-ended SAR ADCs with zero reset energy and a 3-stage common-mode insensitive regenerative comparator. AEU-Int. J. Electron. Commun. 157, 154421 (2022)CrossRef H. Pahlavanzadeh, M.A. Karami, An energy efficient symmetrical DAC switching scheme for single-ended SAR ADCs with zero reset energy and a 3-stage common-mode insensitive regenerative comparator. AEU-Int. J. Electron. Commun. 157, 154421 (2022)CrossRef
22.
Zurück zum Zitat M. Saberi, E. Rahiminejad, R. Lotfi, A power-efficient signal-specific ADC for sensor-interface applications. IEEE Trans. Circuits Syst. Part II Express Briefs 64, 1032 (2016) M. Saberi, E. Rahiminejad, R. Lotfi, A power-efficient signal-specific ADC for sensor-interface applications. IEEE Trans. Circuits Syst. Part II Express Briefs 64, 1032 (2016)
23.
Zurück zum Zitat K.D. Sadeghipour, A new passive sample and hold structure for high-speed, high-resolution ADCs. AEU-Int. J. Electron. Commun. 65(10), 799–805 (2011)CrossRef K.D. Sadeghipour, A new passive sample and hold structure for high-speed, high-resolution ADCs. AEU-Int. J. Electron. Commun. 65(10), 799–805 (2011)CrossRef
24.
Zurück zum Zitat A. Sharma, A. Polley, S.B. Lee, S. Narayanan, W. Li, T. Sculley, S. Ramaswamy, A Sub-60-μA multimodal smart bio sensing SoC with>80-dB SNR, 35μA photo plethysmography signal chain. IEEE J. Solid-State Circuits 52(4), 1021–1033 (2017)CrossRef A. Sharma, A. Polley, S.B. Lee, S. Narayanan, W. Li, T. Sculley, S. Ramaswamy, A Sub-60-μA multimodal smart bio sensing SoC with>80-dB SNR, 35μA photo plethysmography signal chain. IEEE J. Solid-State Circuits 52(4), 1021–1033 (2017)CrossRef
25.
Zurück zum Zitat X. Tong, M. Song, Y. Chen, S. Dong, A 10-bit 120 kS/s SAR ADC without reset energy for biomedical electronics. Circuits Syst. Signal Process. 38, 5411–5425 (2019)CrossRef X. Tong, M. Song, Y. Chen, S. Dong, A 10-bit 120 kS/s SAR ADC without reset energy for biomedical electronics. Circuits Syst. Signal Process. 38, 5411–5425 (2019)CrossRef
26.
Zurück zum Zitat M. Trakimas, S.R. Sonkusale, An adaptive resolution asynchronous ADC architecture for data compression in energy constrained sensing applications. IEEE Trans. Circuits Syst. I Regul. Pap. 58(5), 921–934 (2010)MathSciNetCrossRef M. Trakimas, S.R. Sonkusale, An adaptive resolution asynchronous ADC architecture for data compression in energy constrained sensing applications. IEEE Trans. Circuits Syst. I Regul. Pap. 58(5), 921–934 (2010)MathSciNetCrossRef
27.
Zurück zum Zitat T.-Y. Wang, H.-Y. Li, Z.-Y. Ma, Y.-J. Huang, S.-Y. Peng, A bypass-switching SAR ADC with a dynamic proximity comparator for biomedical applications. IEEE J. Solid-State Circuits 53(6), 1743–1754 (2018)CrossRef T.-Y. Wang, H.-Y. Li, Z.-Y. Ma, Y.-J. Huang, S.-Y. Peng, A bypass-switching SAR ADC with a dynamic proximity comparator for biomedical applications. IEEE J. Solid-State Circuits 53(6), 1743–1754 (2018)CrossRef
28.
Zurück zum Zitat C. Weltin-Wu, Y. Tsividis, An event-driven clockless level-crossing ADC with signal-dependent adaptive resolution. IEEE J. Solid-State Circuits 48(9), 2180–2190 (2013)CrossRef C. Weltin-Wu, Y. Tsividis, An event-driven clockless level-crossing ADC with signal-dependent adaptive resolution. IEEE J. Solid-State Circuits 48(9), 2180–2190 (2013)CrossRef
29.
Zurück zum Zitat T.-F. Wu, M.S.-W. Chen, A noise-shaped VCO-based nonuniform sampling ADC with phase-domain level crossing. IEEE J. Solid-State Circuits 54(3), 623–635 (2019)CrossRef T.-F. Wu, M.S.-W. Chen, A noise-shaped VCO-based nonuniform sampling ADC with phase-domain level crossing. IEEE J. Solid-State Circuits 54(3), 623–635 (2019)CrossRef
30.
Zurück zum Zitat W. Xiaofeng, H. Liu, L. Su, Y. Hao, D. Li, S. Hu, A bootstrapped switch employing a new clock feed-through compensation technique. J. Semicond. 30(12), 125007 (2009)CrossRef W. Xiaofeng, H. Liu, L. Su, Y. Hao, D. Li, S. Hu, A bootstrapped switch employing a new clock feed-through compensation technique. J. Semicond. 30(12), 125007 (2009)CrossRef
31.
Zurück zum Zitat L. Yan, P. Harpe, V.R. Pamula, M. Osawa, Y. Harada, K. Tamiya, C. Van Hoof, R.F. Yazicioglu, A 680 nA ECG acquisition IC for leadless pacemaker applications. IEEE Trans. Biomed. Circuits Syst. 8(6), 779–786 (2014)CrossRef L. Yan, P. Harpe, V.R. Pamula, M. Osawa, Y. Harada, K. Tamiya, C. Van Hoof, R.F. Yazicioglu, A 680 nA ECG acquisition IC for leadless pacemaker applications. IEEE Trans. Biomed. Circuits Syst. 8(6), 779–786 (2014)CrossRef
33.
Zurück zum Zitat R.F. Yazicioglu, S. Kim, T. Torfs, H. Kim, C. Van Hoof, A 30 µW analog signal processor ASIC for portable biopotential signal monitoring. IEEE J. Solid-State Circuits 46(1), 209–223 (2010)CrossRef R.F. Yazicioglu, S. Kim, T. Torfs, H. Kim, C. Van Hoof, A 30 µW analog signal processor ASIC for portable biopotential signal monitoring. IEEE J. Solid-State Circuits 46(1), 209–223 (2010)CrossRef
34.
Zurück zum Zitat M. Zaare, H. Sepehrian, M. Maymandi-Nejad, A new non-uniform adaptive-sampling successive approximation ADC for biomedical sparse signals. Analog Integr. Circuits Signal Process. 74, 317–330 (2013)CrossRef M. Zaare, H. Sepehrian, M. Maymandi-Nejad, A new non-uniform adaptive-sampling successive approximation ADC for biomedical sparse signals. Analog Integr. Circuits Signal Process. 74, 317–330 (2013)CrossRef
35.
Zurück zum Zitat A. Zanjani, M. Jalali, A Power-efficient level-crossing analog-to-digital converter with adaptive resolution based on a signal-dependent sampling mechanism. Circuits Syst. Signal Process. 42(1), 63–83 (2023)CrossRef A. Zanjani, M. Jalali, A Power-efficient level-crossing analog-to-digital converter with adaptive resolution based on a signal-dependent sampling mechanism. Circuits Syst. Signal Process. 42(1), 63–83 (2023)CrossRef
Metadaten
Titel
A New Low-Power Non-uniform Sample and Hold Circuit for Biomedical Signal Processing Applications
verfasst von
Sara Bagher Nasrabadi
Mehdi Dolatshahi
Sayed Mohammadali Zanjani
Hossein Pourghassem
Publikationsdatum
09.06.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 9/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02705-2