Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 3-4/2020

19.12.2019 | ORIGINAL ARTICLE

A new method for hydroforming of thin-walled spherical parts using overlapping tubular blanks

verfasst von: Cong Han, Hao Feng

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 3-4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tube hydroforming is an advanced metal forming processes, which is widely used to form various tubular parts. Axial feeding is usually used to avoid excessive thinning in hydroforming of a variable-diameter part. However, wrinkling defects are susceptible to occur easily under the axial loading if the wall thickness of the tube is small. A new method was proposed to enhance the expansion ratio and improve the thickness distribution for hydroforming of thin-walled spherical parts using overlapping tubular blanks. A special loading tool was created and AISI 304 stainless steel blanks were used for the experimental research. The effects of blank shapes and normal constraints were studied on wrinkling defects of the overlapping blanks. The results show that wrinkling defects at the inner layer of the overlap are prevented by using curved-edge blanks. Wrinkling defects at the outer layer of the overlap is eliminated by using normal constraints. Finally, a sound thin-walled spherical part was obtained by using an overlapping tubular blank. The maximum expansion ratio is 60% and increased by 30.2% compared with that of conventional hydroforming using a closed cross-sections tube. The maximum thinning ratio was 32.4%, which was decreased by 29.3%. In general, it is feasible to use an overlapping blank to form a variable diameter part. The maximum expansion enhances significantly and the thickness distribution improves apparently.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Koç M, Altan T (2001) An overall review of the tube hydroforming (THF) technology. J Mater Process Technol 108(3):384–393CrossRef Koç M, Altan T (2001) An overall review of the tube hydroforming (THF) technology. J Mater Process Technol 108(3):384–393CrossRef
2.
Zurück zum Zitat Yuan SJ, Han C, Wang XS (2006) Hydroforming of automotive structural components with rectangular-sections. Int J Mach Tools and Manuf 46(11):1201–1206CrossRef Yuan SJ, Han C, Wang XS (2006) Hydroforming of automotive structural components with rectangular-sections. Int J Mach Tools and Manuf 46(11):1201–1206CrossRef
3.
Zurück zum Zitat Xie WC, Han C, Chu GN, Yuan SJ (2015) Research on hydro-pressing process of closed section tubular parts. Int J Adv Manuf Technol 80(5–8):1149–1157CrossRef Xie WC, Han C, Chu GN, Yuan SJ (2015) Research on hydro-pressing process of closed section tubular parts. Int J Adv Manuf Technol 80(5–8):1149–1157CrossRef
4.
Zurück zum Zitat Alaswad A, Benyounis KY, Olabi AG (2012) Tube hydroforming process: a reference guide. Mater Des 33:328–339CrossRef Alaswad A, Benyounis KY, Olabi AG (2012) Tube hydroforming process: a reference guide. Mater Des 33:328–339CrossRef
5.
Zurück zum Zitat Carleer B, Kevie GVD, Winter LD, Veldhuizen BV (2000) Analysis of the effect of material properties on the hydroforming process of tubes. J Mater Process Technol 104(1):158–166CrossRef Carleer B, Kevie GVD, Winter LD, Veldhuizen BV (2000) Analysis of the effect of material properties on the hydroforming process of tubes. J Mater Process Technol 104(1):158–166CrossRef
6.
Zurück zum Zitat Manabe KI, Amino M (2002) Effects of process parameters and material properties on deformation process in tube hydroforming. J Mater Process Technol 123(2):285–291CrossRef Manabe KI, Amino M (2002) Effects of process parameters and material properties on deformation process in tube hydroforming. J Mater Process Technol 123(2):285–291CrossRef
7.
Zurück zum Zitat Plancak M, Vollertsen F, Woitschig J (2005) Analysis, finite element simulation, and experimental investigation of friction in tube hydroforming. J Mater Process Technol 170:220–228CrossRef Plancak M, Vollertsen F, Woitschig J (2005) Analysis, finite element simulation, and experimental investigation of friction in tube hydroforming. J Mater Process Technol 170:220–228CrossRef
8.
Zurück zum Zitat Ngaile G, Jaeger S, Altan T (2004) Lubrication in tube hydroforming (THF): part I. lubrication mechanisms and development of model tests to evaluate lubricants and die coatings in the transition and expansion zones. J Mater Process Technol 146(1):108–115CrossRef Ngaile G, Jaeger S, Altan T (2004) Lubrication in tube hydroforming (THF): part I. lubrication mechanisms and development of model tests to evaluate lubricants and die coatings in the transition and expansion zones. J Mater Process Technol 146(1):108–115CrossRef
9.
Zurück zum Zitat Abdelkefi A, Malécot P, Boudeau N, Guermazi N, Haddar N (2017) Evaluation of the friction coefficient in tube hydroforming with the “corner filling test” in a square section die. Int J Adv Manuf Technol 88:2265–2273CrossRef Abdelkefi A, Malécot P, Boudeau N, Guermazi N, Haddar N (2017) Evaluation of the friction coefficient in tube hydroforming with the “corner filling test” in a square section die. Int J Adv Manuf Technol 88:2265–2273CrossRef
10.
Zurück zum Zitat Kang BH, Lee MY, Shon SM, Moon YH (2007) Forming various shapes of tubular bellows using a single-step hydroforming process. J Mater Process Technol 194(1–3):1–6CrossRef Kang BH, Lee MY, Shon SM, Moon YH (2007) Forming various shapes of tubular bellows using a single-step hydroforming process. J Mater Process Technol 194(1–3):1–6CrossRef
11.
Zurück zum Zitat Shin SGR, Joo BD, Tyne CJV, Moon YH (2014) Enhancing tube hydroformability by reducing the local strain gradient at potential necking sites. J Mech Sci Technol 28(10):4057–4062CrossRef Shin SGR, Joo BD, Tyne CJV, Moon YH (2014) Enhancing tube hydroformability by reducing the local strain gradient at potential necking sites. J Mech Sci Technol 28(10):4057–4062CrossRef
12.
Zurück zum Zitat Zhang Q, Wu CD, Zhao SD (2012) Less loading tube-hydroforming technology on eccentric shaft part by using movable die. Mater Trans 53(5):820–825CrossRef Zhang Q, Wu CD, Zhao SD (2012) Less loading tube-hydroforming technology on eccentric shaft part by using movable die. Mater Trans 53(5):820–825CrossRef
13.
Zurück zum Zitat Wada M, Mizumura M, Iguchi K, Kaneda H (2014) Large-expansion hydroforming technology achieving three-times expanding. 11th Int Conf Technol Plast (ICTP). Nagoya 81:2217–2222 Wada M, Mizumura M, Iguchi K, Kaneda H (2014) Large-expansion hydroforming technology achieving three-times expanding. 11th Int Conf Technol Plast (ICTP). Nagoya 81:2217–2222
14.
Zurück zum Zitat Varma NSP, Narasimhan R (2008) A numerical study of the effect of loading conditions on tubular hydroforming. J Mater Process Technol 196(1–3):174–183CrossRef Varma NSP, Narasimhan R (2008) A numerical study of the effect of loading conditions on tubular hydroforming. J Mater Process Technol 196(1–3):174–183CrossRef
15.
Zurück zum Zitat Han C, Liu Q, Lu H, Gao GL, Xie WC, Yuan SJ (2018) Thickness improvement in hydroforming of a variable diameter tubular component by using wrinkles and preforms. Int J Adv Manuf Technol 99(9–12):2993–3003CrossRef Han C, Liu Q, Lu H, Gao GL, Xie WC, Yuan SJ (2018) Thickness improvement in hydroforming of a variable diameter tubular component by using wrinkles and preforms. Int J Adv Manuf Technol 99(9–12):2993–3003CrossRef
16.
Zurück zum Zitat Imaninejad M, Subhash G, Loukus A (2005) Loading path optimization of tube hydroforming process. Int J Mach Tools and Manuf 45(12–13):1504–1514CrossRef Imaninejad M, Subhash G, Loukus A (2005) Loading path optimization of tube hydroforming process. Int J Mach Tools and Manuf 45(12–13):1504–1514CrossRef
17.
Zurück zum Zitat Ben Abdessalem A, El-Hami (2014) A global sensitivity analysis and multi-objective optimization of loading path in tube hydroforming process based on metamodelling techniques. Int J Adv Manuf Technol 71(5–8):753–773CrossRef Ben Abdessalem A, El-Hami (2014) A global sensitivity analysis and multi-objective optimization of loading path in tube hydroforming process based on metamodelling techniques. Int J Adv Manuf Technol 71(5–8):753–773CrossRef
18.
Zurück zum Zitat An H, Green DE, Johrendt J (2012) A hybrid-constrained MOGA and local search method to optimize the load path for tube hydroforming. Int J Adv Manuf Technol 60(9–12):1017–1030CrossRef An H, Green DE, Johrendt J (2012) A hybrid-constrained MOGA and local search method to optimize the load path for tube hydroforming. Int J Adv Manuf Technol 60(9–12):1017–1030CrossRef
19.
Zurück zum Zitat Paquette JA, Kyriakides S (2006) Plastic buckling of tubes under axial compression and internal pressure. Int J Mech Sci 48(8):855–867CrossRef Paquette JA, Kyriakides S (2006) Plastic buckling of tubes under axial compression and internal pressure. Int J Mech Sci 48(8):855–867CrossRef
20.
Zurück zum Zitat Koç M, Altan T (2002) Prediction of forming limits and parameter in the tube hydroforming process. Int J Mach Tools and Manuf 42(1):123–138CrossRef Koç M, Altan T (2002) Prediction of forming limits and parameter in the tube hydroforming process. Int J Mach Tools and Manuf 42(1):123–138CrossRef
21.
Zurück zum Zitat Daxin E, Mizuno T, Li ZG (2008) Stress analysis of rectangular cup drawing. J Mater Process Technol 205(1–3):469–476 Daxin E, Mizuno T, Li ZG (2008) Stress analysis of rectangular cup drawing. J Mater Process Technol 205(1–3):469–476
22.
Zurück zum Zitat S CZ, C GL, L ZQ (2005) Determining the optimum variable blank-holder forces using adaptive response surface methodology (ARSM). Int J Adv Manuf Technol 26(1–2):23–29 S CZ, C GL, L ZQ (2005) Determining the optimum variable blank-holder forces using adaptive response surface methodology (ARSM). Int J Adv Manuf Technol 26(1–2):23–29
Metadaten
Titel
A new method for hydroforming of thin-walled spherical parts using overlapping tubular blanks
verfasst von
Cong Han
Hao Feng
Publikationsdatum
19.12.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 3-4/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04743-6

Weitere Artikel der Ausgabe 3-4/2020

The International Journal of Advanced Manufacturing Technology 3-4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.