Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 6/2017

26.09.2016 | Original Article

A new method to approximate load–displacement relationships of spinal motion segments for patient-specific multi-body models of scoliotic spine

verfasst von: Athena Jalalian, Francis E. H. Tay, Soheil Arastehfar, Gabriel Liu

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Load–displacement relationships of spinal motion segments are crucial factors in characterizing the stiffness of scoliotic spine models to mimic the spine responses to loads. Although nonlinear approach to approximation of the relationships can be superior to linear ones, little mention has been made to deriving personalized nonlinear load–displacement relationships in previous studies. A method is developed for nonlinear approximation of load–displacement relationships of spinal motion segments to assist characterizing in vivo the stiffness of spine models. We propose approximation by tangent functions and focus on rotational displacements in lateral direction. The tangent functions are characterized using lateral bending test. A multi-body model was characterized to 18 patients and utilized to simulate four spine positions; right bending, left bending, neutral, and traction. The same was done using linear functions to assess the performance of the proposed tangent function in comparison with the linear function. Root-mean-square error (RMSE) of the displacements estimated by the tangent functions was 44 % smaller than the linear functions. This shows the ability of our tangent function in approximation of the relationships for a range of infinitesimal to large displacements involved in the spine movement to the four positions. In addition, the models based on the tangent functions yielded 67, 55, and 39 % smaller RMSEs of Ferguson angles, locations of vertebrae, and orientations of vertebrae, respectively, implying better estimates of spine responses to loads. Overall, it can be concluded that our method for approximating load–displacement relationships of spinal motion segments can offer good estimates of scoliotic spine stiffness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The erect position is considered as the resting position of the spine in scoliotic spine models, i.e. it is assumed that there is no load on the spine model and r of all vertebrae is zero [5, 21, 32].
 
2
In multi-body models of the scoliotic spine, to simulate the lateral bending positions, a force is typically exerted on the uppermost vertebra in the spine model in the erect position [12].
 
3
504 displacements = 14 vertebrae from L3 to T2 × 2 positions × 18 patients; note that L4 had no displacement according to definition of G.
 
4
The bending X-rays are taken while the patients perform maximum voluntary bending movements to the right/left sides, implying small difference between R and r.
 
Literatur
1.
Zurück zum Zitat Abouhossein A, Weisse B, Ferguson SJ (2011) A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Comput Methods Biomech Biomed Eng 14:527–537CrossRef Abouhossein A, Weisse B, Ferguson SJ (2011) A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Comput Methods Biomech Biomed Eng 14:527–537CrossRef
3.
Zurück zum Zitat Ashton-Miller JA, Schultz AB (1987) Biomechanics of the human spine and trunk. Exerc Sport Sci Rev 16:169–204 Ashton-Miller JA, Schultz AB (1987) Biomechanics of the human spine and trunk. Exerc Sport Sci Rev 16:169–204
4.
Zurück zum Zitat Aubin C-E, Petit Y, Stokes I, Poulin F, Gardner-Morse M, Labelle H (2003) Biomechanical modeling of posterior instrumentation of the scoliotic spine. Comput Methods Biomech Biomed Eng 6:27–32CrossRef Aubin C-E, Petit Y, Stokes I, Poulin F, Gardner-Morse M, Labelle H (2003) Biomechanical modeling of posterior instrumentation of the scoliotic spine. Comput Methods Biomech Biomed Eng 6:27–32CrossRef
5.
Zurück zum Zitat Aubin CE, Labelle H, Chevrefils C, Desroches G, Clin J, Eng ABM (2008) Preoperative planning simulator for spinal deformity surgeries. Spine 33:2143–2152CrossRefPubMed Aubin CE, Labelle H, Chevrefils C, Desroches G, Clin J, Eng ABM (2008) Preoperative planning simulator for spinal deformity surgeries. Spine 33:2143–2152CrossRefPubMed
6.
Zurück zum Zitat Bazrgari B, Shirazi-Adl A, Arjmand N (2007) Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads. Eur Spine J 16:687–699CrossRefPubMed Bazrgari B, Shirazi-Adl A, Arjmand N (2007) Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads. Eur Spine J 16:687–699CrossRefPubMed
7.
Zurück zum Zitat Chalmers E, Westover L, Jacob J, Donauer A, Zhao V, Parent E, Moreau M, Mahood J, Hedden D, Lou EM (2015) Predicting success or failure of brace treatment for adolescents with idiopathic scoliosis. Med Biol Eng Computt 53:1001–1009. doi:10.1007/s11517-015-1306-7 CrossRef Chalmers E, Westover L, Jacob J, Donauer A, Zhao V, Parent E, Moreau M, Mahood J, Hedden D, Lou EM (2015) Predicting success or failure of brace treatment for adolescents with idiopathic scoliosis. Med Biol Eng Computt 53:1001–1009. doi:10.​1007/​s11517-015-1306-7 CrossRef
8.
Zurück zum Zitat Cheriet F, Meunier J (1999) Self-calibration of a biplane X-ray imaging system for an optimal three dimensional reconstruction. Comput Med Imaging Graph 23:133–141CrossRefPubMed Cheriet F, Meunier J (1999) Self-calibration of a biplane X-ray imaging system for an optimal three dimensional reconstruction. Comput Med Imaging Graph 23:133–141CrossRefPubMed
9.
Zurück zum Zitat Christophy M, Curtin M, Senan NAF, Lotz JC, O’Reilly OM (2013) On the modeling of the intervertebral joint in multibody models for the spine. Multibody SysDyn 30:413–432CrossRef Christophy M, Curtin M, Senan NAF, Lotz JC, O’Reilly OM (2013) On the modeling of the intervertebral joint in multibody models for the spine. Multibody SysDyn 30:413–432CrossRef
10.
Zurück zum Zitat Christophy M, Senan NAF, Lotz JC, O’Reilly OM (2012) A musculoskeletal model for the lumbar spine. Biomech Model Mechanobiol 11:19–34CrossRefPubMed Christophy M, Senan NAF, Lotz JC, O’Reilly OM (2012) A musculoskeletal model for the lumbar spine. Biomech Model Mechanobiol 11:19–34CrossRefPubMed
11.
Zurück zum Zitat Colton T (1974) Statistics in medicine. Little, Brown, Boston, p 164 Colton T (1974) Statistics in medicine. Little, Brown, Boston, p 164
12.
Zurück zum Zitat Desroches G, Aubin C-E, Sucato DJ, Rivard C-H (2007) Simulation of an anterior spine instrumentation in adolescent idiopathic scoliosis using a flexible multi-body model. Med Biol Eng Comput 45:759–768CrossRefPubMed Desroches G, Aubin C-E, Sucato DJ, Rivard C-H (2007) Simulation of an anterior spine instrumentation in adolescent idiopathic scoliosis using a flexible multi-body model. Med Biol Eng Comput 45:759–768CrossRefPubMed
13.
Zurück zum Zitat Duke K, Aubin C-E, Dansereau J, Labelle H (2005) Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation. Clin Biomech 20:923–931CrossRef Duke K, Aubin C-E, Dansereau J, Labelle H (2005) Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation. Clin Biomech 20:923–931CrossRef
14.
Zurück zum Zitat Engsberg JR, Lenke LG, Reitenbach AK, Hollander KW, Bridwell KH, Blanke K (2002) Prospective evaluation of trunk range of motion in adolescents with idiopathic scoliosis undergoing spinal fusion surgery. Spine 27:1346–1354CrossRefPubMed Engsberg JR, Lenke LG, Reitenbach AK, Hollander KW, Bridwell KH, Blanke K (2002) Prospective evaluation of trunk range of motion in adolescents with idiopathic scoliosis undergoing spinal fusion surgery. Spine 27:1346–1354CrossRefPubMed
15.
Zurück zum Zitat Gardner-Morse MG, Stokes IA (2004) Structural behavior of human lumbar spinal motion segments. J Biomech 37:205–212CrossRefPubMed Gardner-Morse MG, Stokes IA (2004) Structural behavior of human lumbar spinal motion segments. J Biomech 37:205–212CrossRefPubMed
16.
Zurück zum Zitat Heuer F, Schmidt H, Klezl Z, Claes L, Wilke H-J (2007) Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J Biomech 40:271–280CrossRefPubMed Heuer F, Schmidt H, Klezl Z, Claes L, Wilke H-J (2007) Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J Biomech 40:271–280CrossRefPubMed
17.
Zurück zum Zitat Huynh K, Gibson I, Jagdish B, Lu W (2015) Development and validation of a discretised multi-body spine model in LifeMOD for biodynamic behaviour simulation. Comput Methods Biomech Biomed Eng 18:175–184CrossRef Huynh K, Gibson I, Jagdish B, Lu W (2015) Development and validation of a discretised multi-body spine model in LifeMOD for biodynamic behaviour simulation. Comput Methods Biomech Biomed Eng 18:175–184CrossRef
18.
Zurück zum Zitat Jalalian A, Gibson I, Tay EH (2013) Computational biomechanical modeling of scoliotic spine: challenges and opportunities. Spine Deform 1:401–411CrossRefPubMed Jalalian A, Gibson I, Tay EH (2013) Computational biomechanical modeling of scoliotic spine: challenges and opportunities. Spine Deform 1:401–411CrossRefPubMed
19.
Zurück zum Zitat Jalalian A, Tay EH, Arastehfar S, Gibson I, Liu G (2016) Finding line of action of the force exerted on erect spine based on lateral bending test in personalization of scoliotic spine models. Med Biol Eng Comput. doi:10.1007/s11517-016-1550-5 Jalalian A, Tay EH, Arastehfar S, Gibson I, Liu G (2016) Finding line of action of the force exerted on erect spine based on lateral bending test in personalization of scoliotic spine models. Med Biol Eng Comput. doi:10.​1007/​s11517-016-1550-5
20.
Zurück zum Zitat Jalalian A, Tay EH, Arastehfar S, Liu G (2016) A patient-specific multibody kinematic model for representation of the scoliotic spine movement in frontal plane of the human body. Multibody Syst Dyn Jalalian A, Tay EH, Arastehfar S, Liu G (2016) A patient-specific multibody kinematic model for representation of the scoliotic spine movement in frontal plane of the human body. Multibody Syst Dyn
21.
Zurück zum Zitat Jalalian A, Tay EH, Liu G (2016) Data mining in medicine: relationship of scoliotic spine curvature to the movement sequence of lateral bending positions. In: 15th industrial conference on data mining ICDM 2016, New York, USA, 12–14 July 2016. Springer International Publishing, pp 29–40 Jalalian A, Tay EH, Liu G (2016) Data mining in medicine: relationship of scoliotic spine curvature to the movement sequence of lateral bending positions. In: 15th industrial conference on data mining ICDM 2016, New York, USA, 12–14 July 2016. Springer International Publishing, pp 29–40
22.
Zurück zum Zitat Jalalian A, Tay EH, Liu G A hypothesis about line of action of the force exerted on spine based on lateral bending test in personalized scoliotic spine models. In: The Canadian society for mechanical engineering international congress, Kelowna, BC, Canada, June 26–29, 2016 Jalalian A, Tay EH, Liu G A hypothesis about line of action of the force exerted on spine based on lateral bending test in personalized scoliotic spine models. In: The Canadian society for mechanical engineering international congress, Kelowna, BC, Canada, June 26–29, 2016
23.
Zurück zum Zitat Keenan BE, Izatt MT, Askin GN, Labrom RD, Pettet GJ, Pearcy MJ, Adam CJ (2014) Segmental torso masses in adolescent idiopathic scoliosis. Clin Biomech 29:773–779CrossRef Keenan BE, Izatt MT, Askin GN, Labrom RD, Pettet GJ, Pearcy MJ, Adam CJ (2014) Segmental torso masses in adolescent idiopathic scoliosis. Clin Biomech 29:773–779CrossRef
24.
Zurück zum Zitat Klepps SJ, Lenke LG, Bridwell KH, Bassett GS, Whorton J (2001) Prospective comparison of flexibility radiographs in adolescent idiopathic scoliosis. Spine 26:E74–E79CrossRefPubMed Klepps SJ, Lenke LG, Bridwell KH, Bassett GS, Whorton J (2001) Prospective comparison of flexibility radiographs in adolescent idiopathic scoliosis. Spine 26:E74–E79CrossRefPubMed
25.
Zurück zum Zitat Little JP, Adam C (2011) Patient-specific computational biomechanics for simulating adolescent scoliosis surgery: predicted vs clinical correction for a preliminary series of six patients. Int J Numer Methods Biomed Eng 27:347–356CrossRef Little JP, Adam C (2011) Patient-specific computational biomechanics for simulating adolescent scoliosis surgery: predicted vs clinical correction for a preliminary series of six patients. Int J Numer Methods Biomed Eng 27:347–356CrossRef
26.
Zurück zum Zitat McGill SM, Norman RW (1987) Effects of an anatomically detailed erector spinae model on L4L5 disc compression and shear. J Biomech 20:591–600CrossRefPubMed McGill SM, Norman RW (1987) Effects of an anatomically detailed erector spinae model on L4L5 disc compression and shear. J Biomech 20:591–600CrossRefPubMed
27.
Zurück zum Zitat O’Reilly OM, Metzger MF, Buckley JM, Moody DA, Lotz JC (2009) On the stiffness matrix of the intervertebral joint: application to total disk replacement. J Biomech Eng 131:081007CrossRefPubMed O’Reilly OM, Metzger MF, Buckley JM, Moody DA, Lotz JC (2009) On the stiffness matrix of the intervertebral joint: application to total disk replacement. J Biomech Eng 131:081007CrossRefPubMed
28.
Zurück zum Zitat Oxland TR, Lin RM, Panjabi MM (1992) Three-dimensional mechanical properties of the thoracolumbar junction. J Orthop Res 10:573–580CrossRefPubMed Oxland TR, Lin RM, Panjabi MM (1992) Three-dimensional mechanical properties of the thoracolumbar junction. J Orthop Res 10:573–580CrossRefPubMed
29.
Zurück zum Zitat Panjabi MM, Brand RA Jr, White AA III (1976) Three-dimensional flexibility and stiffness properties of the human thoracic spine. J Biomech 9:185–192CrossRefPubMed Panjabi MM, Brand RA Jr, White AA III (1976) Three-dimensional flexibility and stiffness properties of the human thoracic spine. J Biomech 9:185–192CrossRefPubMed
30.
Zurück zum Zitat Panjabi MM, Oxland T, Yamamoto I, Crisco J (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg 76:413–424CrossRefPubMed Panjabi MM, Oxland T, Yamamoto I, Crisco J (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg 76:413–424CrossRefPubMed
31.
Zurück zum Zitat Perret C, Poiraudeau S, Fermanian J, Revel M (2001) Pelvic mobility when bending forward in standing position: validity and reliability of 2 motion analysis devices. Arch Phys Med Rehabil 82:221–226CrossRefPubMed Perret C, Poiraudeau S, Fermanian J, Revel M (2001) Pelvic mobility when bending forward in standing position: validity and reliability of 2 motion analysis devices. Arch Phys Med Rehabil 82:221–226CrossRefPubMed
32.
Zurück zum Zitat Petit Y, Aubin C, Labelle H (2004) Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine. Med Biol Eng Comput 42:55–60CrossRefPubMed Petit Y, Aubin C, Labelle H (2004) Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine. Med Biol Eng Comput 42:55–60CrossRefPubMed
33.
Zurück zum Zitat Polly DW Jr, Sturm PF (1998) Traction versus supine side bending: which technique best determines curve flexibility? Spine 23:804–808CrossRefPubMed Polly DW Jr, Sturm PF (1998) Traction versus supine side bending: which technique best determines curve flexibility? Spine 23:804–808CrossRefPubMed
34.
Zurück zum Zitat Rupp T, Ehlers W, Karajan N, Günther M, Schmitt S (2015) A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomech Model Mechanobiol 14:1081–1105CrossRefPubMed Rupp T, Ehlers W, Karajan N, Günther M, Schmitt S (2015) A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomech Model Mechanobiol 14:1081–1105CrossRefPubMed
35.
Zurück zum Zitat Salmingo RA, Tadano S, Fujisaki K, Abe Y, Ito M (2013) Relationship of forces acting on implant rods and degree of scoliosis correction. Clin Biomech 28:122–128CrossRef Salmingo RA, Tadano S, Fujisaki K, Abe Y, Ito M (2013) Relationship of forces acting on implant rods and degree of scoliosis correction. Clin Biomech 28:122–128CrossRef
36.
Zurück zum Zitat Shojaei I, Arjmand N, Bazrgari B (2015) An optimization‐based method for prediction of lumbar spine segmental kinematics from the measurements of thorax and pelvic kinematics. Int J Numer Methods Biomed Eng 31(12). doi:10.1002/cnm.2729 Shojaei I, Arjmand N, Bazrgari B (2015) An optimization‐based method for prediction of lumbar spine segmental kinematics from the measurements of thorax and pelvic kinematics. Int J Numer Methods Biomed Eng 31(12). doi:10.​1002/​cnm.​2729
37.
Zurück zum Zitat Stokes I, Iatridis J (2005) Biomechanics of the spine. In: Mow VC, Huiskes R (eds) Basic orthopaedic biomechanics and mechano-biology. Lippincott Williams, Wilkins, Philadelphia, pp 196–197 Stokes I, Iatridis J (2005) Biomechanics of the spine. In: Mow VC, Huiskes R (eds) Basic orthopaedic biomechanics and mechano-biology. Lippincott Williams, Wilkins, Philadelphia, pp 196–197
38.
Zurück zum Zitat Stokes IA (1994) Three-dimensional terminology of spinal deformity: a report presented to the scoliosis research society by the scoliosis research society working group on 3-D terminology of spinal deformity. Spine 19:236–248CrossRefPubMed Stokes IA (1994) Three-dimensional terminology of spinal deformity: a report presented to the scoliosis research society by the scoliosis research society working group on 3-D terminology of spinal deformity. Spine 19:236–248CrossRefPubMed
39.
Zurück zum Zitat Stokes IA, Gardner-Morse M, Churchill D, Laible JP (2002) Measurement of a spinal motion segment stiffness matrix. J Biomech 35:517–521CrossRefPubMed Stokes IA, Gardner-Morse M, Churchill D, Laible JP (2002) Measurement of a spinal motion segment stiffness matrix. J Biomech 35:517–521CrossRefPubMed
41.
Zurück zum Zitat Udoekwere UI, Krzak JJ, Graf A, Hassani S, Tarima S, Riordan M, Sturm PF, Hammerberg KW, Gupta P, Anissipour AK (2014) Effect of lowest instrumented vertebra on trunk mobility in patients with adolescent idiopathic scoliosis undergoing a posterior spinal fusion. Spine Deformity 2:291–300CrossRefPubMed Udoekwere UI, Krzak JJ, Graf A, Hassani S, Tarima S, Riordan M, Sturm PF, Hammerberg KW, Gupta P, Anissipour AK (2014) Effect of lowest instrumented vertebra on trunk mobility in patients with adolescent idiopathic scoliosis undergoing a posterior spinal fusion. Spine Deformity 2:291–300CrossRefPubMed
42.
Zurück zum Zitat Wagnac E, Arnoux P-J, Garo A, Aubin C-E (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput 50:903–915. doi:10.1007/s11517-012-0908-6 CrossRefPubMed Wagnac E, Arnoux P-J, Garo A, Aubin C-E (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput 50:903–915. doi:10.​1007/​s11517-012-0908-6 CrossRefPubMed
43.
Zurück zum Zitat Wong KW, Leong JC, M-k Chan, Luk KD, Lu WW (2004) The flexion–extension profile of lumbar spine in 100 healthy volunteers. Spine 29:1636–1641CrossRefPubMed Wong KW, Leong JC, M-k Chan, Luk KD, Lu WW (2004) The flexion–extension profile of lumbar spine in 100 healthy volunteers. Spine 29:1636–1641CrossRefPubMed
Metadaten
Titel
A new method to approximate load–displacement relationships of spinal motion segments for patient-specific multi-body models of scoliotic spine
verfasst von
Athena Jalalian
Francis E. H. Tay
Soheil Arastehfar
Gabriel Liu
Publikationsdatum
26.09.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 6/2017
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-016-1576-8

Weitere Artikel der Ausgabe 6/2017

Medical & Biological Engineering & Computing 6/2017 Zur Ausgabe