Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Calcolo 4/2020

01.12.2020

A new mixed-FEM for steady-state natural convection models allowing conservation of momentum and thermal energy

verfasst von: Sergio Caucao, Ricardo Oyarzúa, Segundo Villa-Fuentes

Erschienen in: Calcolo | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In this work we present a new mixed finite element method for a class of steady-state natural convection models describing the behavior of non-isothermal incompressible fluids subject to a heat source. Our approach is based on the introduction of a modified pseudostress tensor depending on the pressure, and the diffusive and convective terms of the Navier–Stokes equations for the fluid and a vector unknown involving the temperature, its gradient and the velocity. The introduction of these further unknowns lead to a mixed formulation where the aforementioned pseudostress tensor and vector unknown, together with the velocity and the temperature, are the main unknowns of the system. Then the associated Galerkin scheme can be defined by employing Raviart–Thomas elements of degree k for the pseudostress tensor and the vector unknown, and discontinuous piece-wise polynomial elements of degree k for the velocity and temperature. With this choice of spaces, both, momentum and thermal energy, are conserved if the external forces belong to the velocity and temperature discrete spaces, respectively, which constitutes one of the main feature of our approach. We prove unique solvability for both, the continuous and discrete problems and provide the corresponding convergence analysis. Further variables of interest, such as the fluid pressure, the fluid vorticity, the fluid velocity gradient, and the heat-flux can be easily approximated as a simple postprocess of the finite element solutions with the same rate of convergence. Finally, several numerical results illustrating the performance of the method are provided.
Literatur
1.
Zurück zum Zitat Allendes, A., Barrenechea, G.R., Narranjo, C.: A divergence-free low-order stabilized finite element method for a generalized steady state Boussinesq problem. Comput. Methods Appl. Mech. Eng. 340, 90–120 (2018) MathSciNetCrossRef Allendes, A., Barrenechea, G.R., Narranjo, C.: A divergence-free low-order stabilized finite element method for a generalized steady state Boussinesq problem. Comput. Methods Appl. Mech. Eng. 340, 90–120 (2018) MathSciNetCrossRef
2.
Zurück zum Zitat Almonacid, J.A., Gatica, G.N.: A fully-mixed finite element method for the n-dimensional Boussinesq problem with temperature-dependent parameters. Comput. Methods Appl. Math. 20(2), 187–213 (2020) MathSciNetCrossRef Almonacid, J.A., Gatica, G.N.: A fully-mixed finite element method for the n-dimensional Boussinesq problem with temperature-dependent parameters. Comput. Methods Appl. Math. 20(2), 187–213 (2020) MathSciNetCrossRef
3.
Zurück zum Zitat Alvarez, M., Gatica, G.N., Ruiz-Baier, R.: An augmented mixed-primal finite element method for a coupled flow-transport problem. ESAIM Math. Model. Numer. Anal. 49(5), 1399–1427 (2015) MathSciNetCrossRef Alvarez, M., Gatica, G.N., Ruiz-Baier, R.: An augmented mixed-primal finite element method for a coupled flow-transport problem. ESAIM Math. Model. Numer. Anal. 49(5), 1399–1427 (2015) MathSciNetCrossRef
4.
Zurück zum Zitat Alvarez, M., Gatica, G.N., Ruiz-Baier, R.: A posteriori error analysis for a viscous flow-transport problem. ESAIM Math. Model. Numer. Anal. 50(6), 1789–1816 (2016) MathSciNetCrossRef Alvarez, M., Gatica, G.N., Ruiz-Baier, R.: A posteriori error analysis for a viscous flow-transport problem. ESAIM Math. Model. Numer. Anal. 50(6), 1789–1816 (2016) MathSciNetCrossRef
5.
Zurück zum Zitat Barakos, G., Mitsoulis, E., Assimacopoulos, D.: Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions. Int. J. Numer. Methods Fluids 18, 695–719 (1994) CrossRef Barakos, G., Mitsoulis, E., Assimacopoulos, D.: Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions. Int. J. Numer. Methods Fluids 18, 695–719 (1994) CrossRef
6.
Zurück zum Zitat Bernardi, C., Métivet, B., Pernaud-Thomas, B.: Couplage des équations de Navier-Stokes et de la chaleur: le modèle et son approximation par éléments finis. (French) [Coupling of Navier-Stokes and heat equations: the model and its finite-element approximation] RAIRO Modél. Math. Anal. Numér. 29(7), 871–921 (1995) Bernardi, C., Métivet, B., Pernaud-Thomas, B.: Couplage des équations de Navier-Stokes et de la chaleur: le modèle et son approximation par éléments finis. (French) [Coupling of Navier-Stokes and heat equations: the model and its finite-element approximation] RAIRO Modél. Math. Anal. Numér. 29(7), 871–921 (1995)
7.
Zurück zum Zitat Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics. Springer, New York (1991) CrossRef Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics. Springer, New York (1991) CrossRef
8.
Zurück zum Zitat Bürger, R., Méndez, P.E., Ruiz-Baier, R.: On \(H(div)\)-conforming methods for double-diffusion equations in porous media. SIAM J. Numer. Anal. 57(3), 1318–1343 (2019) MathSciNetCrossRef Bürger, R., Méndez, P.E., Ruiz-Baier, R.: On \(H(div)\)-conforming methods for double-diffusion equations in porous media. SIAM J. Numer. Anal. 57(3), 1318–1343 (2019) MathSciNetCrossRef
10.
Zurück zum Zitat Camaño, J., Muñoz, C., Oyarzúa, R.: Numerical analysis of a dual-mixed problem in non-standard Banach spaces. Electron. Trans. Numer. Anal. 48, 114–130 (2018) MathSciNetCrossRef Camaño, J., Muñoz, C., Oyarzúa, R.: Numerical analysis of a dual-mixed problem in non-standard Banach spaces. Electron. Trans. Numer. Anal. 48, 114–130 (2018) MathSciNetCrossRef
11.
Zurück zum Zitat Camaño, J., Oyarzúa, R., Tierra, G.: Analysis of an augmented mixed-FEM for the Navier–Stokes problem. Math. Comput. 86(304), 589–615 (2017) MathSciNetCrossRef Camaño, J., Oyarzúa, R., Tierra, G.: Analysis of an augmented mixed-FEM for the Navier–Stokes problem. Math. Comput. 86(304), 589–615 (2017) MathSciNetCrossRef
12.
Zurück zum Zitat Çibik, A., Kaya, S.: A projection-based stabilized finite element method for steady-state natural convection problem. J. Math. Anal. Appl. 381(2), 469–484 (2011) MathSciNetCrossRef Çibik, A., Kaya, S.: A projection-based stabilized finite element method for steady-state natural convection problem. J. Math. Anal. Appl. 381(2), 469–484 (2011) MathSciNetCrossRef
13.
Zurück zum Zitat Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74(251), 1067–1095 (2005) MathSciNetCrossRef Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74(251), 1067–1095 (2005) MathSciNetCrossRef
14.
Zurück zum Zitat Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. J. Sci. Comput. 31(1–2), 61–73 (2007) MathSciNetCrossRef Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations. J. Sci. Comput. 31(1–2), 61–73 (2007) MathSciNetCrossRef
15.
Zurück zum Zitat Colmenares, E., Gatica, G.N., Moraga, S.: A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem. ESAIM Math. Model. Numer. Anal. 54(5), 1525–1568 (2020) MathSciNetCrossRef Colmenares, E., Gatica, G.N., Moraga, S.: A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem. ESAIM Math. Model. Numer. Anal. 54(5), 1525–1568 (2020) MathSciNetCrossRef
16.
Zurück zum Zitat Colmenares, E., Gatica, G.N., Oyarzúa, R.: Analysis of an augmented mixed-primal formulation for the stationary Boussinesq problem. Numer. Methods Partial Differ. Equ. 32(2), 445–478 (2016) MathSciNetCrossRef Colmenares, E., Gatica, G.N., Oyarzúa, R.: Analysis of an augmented mixed-primal formulation for the stationary Boussinesq problem. Numer. Methods Partial Differ. Equ. 32(2), 445–478 (2016) MathSciNetCrossRef
17.
Zurück zum Zitat Colmenares, E., Gatica, G.N., Oyarzúa, R.: Fixed point strategies for mixed variational formulations of the stationary Boussinesq problem. C. R. Math. Acad. Sci. Paris 354(1), 57–62 (2016) MathSciNetCrossRef Colmenares, E., Gatica, G.N., Oyarzúa, R.: Fixed point strategies for mixed variational formulations of the stationary Boussinesq problem. C. R. Math. Acad. Sci. Paris 354(1), 57–62 (2016) MathSciNetCrossRef
18.
Zurück zum Zitat Colmenares, E., Gatica, G.N., Oyarzúa, R.: An augmented fully-mixed finite element method for the stationary Boussinesq problem. Calcolo 54(1), 167–205 (2017) MathSciNetCrossRef Colmenares, E., Gatica, G.N., Oyarzúa, R.: An augmented fully-mixed finite element method for the stationary Boussinesq problem. Calcolo 54(1), 167–205 (2017) MathSciNetCrossRef
19.
Zurück zum Zitat Colmenares, E., Neilan, M.: Dual-mixed finite element methods for the stationary Boussinesq problem. Comput. Math. Appl. 72(7), 1828–1850 (2016) MathSciNetCrossRef Colmenares, E., Neilan, M.: Dual-mixed finite element methods for the stationary Boussinesq problem. Comput. Math. Appl. 72(7), 1828–1850 (2016) MathSciNetCrossRef
20.
Zurück zum Zitat Dalal, A., Das, M.K.: Natural convection in a rectangular cavity heated from below and uniformly cooled from the top and both sides. Numer. Heat Tr. A-Appl 49(3), 301–322 (2006) CrossRef Dalal, A., Das, M.K.: Natural convection in a rectangular cavity heated from below and uniformly cooled from the top and both sides. Numer. Heat Tr. A-Appl 49(3), 301–322 (2006) CrossRef
21.
Zurück zum Zitat Dallmann, H., Arndt, D.: Stabilized finite element methods for the Oberbeck–Boussinesq model. J. Sci. Comput. 69(1), 244–273 (2016) MathSciNetCrossRef Dallmann, H., Arndt, D.: Stabilized finite element methods for the Oberbeck–Boussinesq model. J. Sci. Comput. 69(1), 244–273 (2016) MathSciNetCrossRef
22.
Zurück zum Zitat De Vahl Davis, G.: Natural convection of air in a square cavity: a bench mark numerical solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983) CrossRef De Vahl Davis, G.: Natural convection of air in a square cavity: a bench mark numerical solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983) CrossRef
23.
Zurück zum Zitat Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, 159. Springer, New York (2004) Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, 159. Springer, New York (2004)
24.
Zurück zum Zitat Farhoul, M., Nicaise, S., Paquet, L.: A mixed formulation of Boussinesq equations: analysis of nonsingular solutions. Math. Comput. 69(231), 965–986 (2000) MathSciNetCrossRef Farhoul, M., Nicaise, S., Paquet, L.: A mixed formulation of Boussinesq equations: analysis of nonsingular solutions. Math. Comput. 69(231), 965–986 (2000) MathSciNetCrossRef
25.
Zurück zum Zitat Gatica, G.N.: A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. SpringerBriefs in Mathematics, Springer, Cham (2014) Gatica, G.N.: A Simple Introduction to the Mixed Finite Element Method. Theory and Applications. SpringerBriefs in Mathematics, Springer, Cham (2014)
26.
Zurück zum Zitat Jakab, T., Mitrea, I., Mitrea, M.: Sobolev estimates for the Green potential associated with the Robin-Laplacian in Lipschitz domains satisfying a uniform exteriour ball condition, Sobolev Spaces in mathematics II, Applications in Analysis and Partial Differential Equations. International Mathematical Series, Vol. 9. Springer, Novosibirsk (2008) Jakab, T., Mitrea, I., Mitrea, M.: Sobolev estimates for the Green potential associated with the Robin-Laplacian in Lipschitz domains satisfying a uniform exteriour ball condition, Sobolev Spaces in mathematics II, Applications in Analysis and Partial Differential Equations. International Mathematical Series, Vol. 9. Springer, Novosibirsk (2008)
27.
Zurück zum Zitat Oyarzúa, R., Qin, T., Schötzau, D.: An exactly divergence-free finite element method for a generalized Boussinesq problem. IMA J. Numer. Anal. 34(3), 1104–1135 (2014) MathSciNetCrossRef Oyarzúa, R., Qin, T., Schötzau, D.: An exactly divergence-free finite element method for a generalized Boussinesq problem. IMA J. Numer. Anal. 34(3), 1104–1135 (2014) MathSciNetCrossRef
28.
Zurück zum Zitat Oyarzúa, R., Serón, M.: A divergence-conforming DG-mixed finite element method for the stationary Boussinesq problem. J. Sci. Comput. 85(1), 14 (2020) Oyarzúa, R., Serón, M.: A divergence-conforming DG-mixed finite element method for the stationary Boussinesq problem. J. Sci. Comput. 85(1), 14 (2020)
29.
Zurück zum Zitat Oyarzúa, R., Zúñiga, P.: Analysis of a conforming finite element method for the Boussinesq problem with temperature-dependent parameters. J. Comput. Appl. Math. 323, 71–94 (2017) MathSciNetCrossRef Oyarzúa, R., Zúñiga, P.: Analysis of a conforming finite element method for the Boussinesq problem with temperature-dependent parameters. J. Comput. Appl. Math. 323, 71–94 (2017) MathSciNetCrossRef
30.
Zurück zum Zitat Pérez, C.E., Thomas, J.-M., Blancher, S., Creff, R.: The steady Navier–Stokes/energy system with temperature-dependent viscosity–Part 2: the discrete problem and numerical experiments. Int. J. Numer. Methods Fluids 56(1), 91–114 (2008) CrossRef Pérez, C.E., Thomas, J.-M., Blancher, S., Creff, R.: The steady Navier–Stokes/energy system with temperature-dependent viscosity–Part 2: the discrete problem and numerical experiments. Int. J. Numer. Methods Fluids 56(1), 91–114 (2008) CrossRef
31.
Zurück zum Zitat Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics, 23. Springer, Berlin (1994) Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics, 23. Springer, Berlin (1994)
32.
Zurück zum Zitat Tabata, M., Tagami, D.: Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients. Numer. Math. 100(2), 351–372 (2005) MathSciNetCrossRef Tabata, M., Tagami, D.: Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients. Numer. Math. 100(2), 351–372 (2005) MathSciNetCrossRef
33.
Zurück zum Zitat Zhang, T., Liang, H.: Decoupled stabilized finite element methods for the Boussinesq equations with temperature-dependent coefficients. Int. J. Heat Mass Tr. 110, 151–165 (2017) CrossRef Zhang, T., Liang, H.: Decoupled stabilized finite element methods for the Boussinesq equations with temperature-dependent coefficients. Int. J. Heat Mass Tr. 110, 151–165 (2017) CrossRef
Metadaten
Titel
A new mixed-FEM for steady-state natural convection models allowing conservation of momentum and thermal energy
verfasst von
Sergio Caucao
Ricardo Oyarzúa
Segundo Villa-Fuentes
Publikationsdatum
01.12.2020
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 4/2020
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-020-00385-3

Weitere Artikel der Ausgabe 4/2020

Calcolo 4/2020 Zur Ausgabe

Premium Partner