Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 4/2018

29.08.2017 | Original Article

A new Monte Carlo code for light transport in biological tissue

verfasst von: Eugenio Torres-García, Rigoberto Oros-Pantoja, Liliana Aranda-Lara, Patricia Vieyra-Reyes

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this work was to develop an event-by-event Monte Carlo code for light transport (called MCLTmx) to identify and quantify ballistic, diffuse, and absorbed photons, as well as their interaction coordinates inside the biological tissue. The mean free path length was computed between two interactions for scattering or absorption processes, and if necessary scatter angles were calculated, until the photon disappeared or went out of region of interest. A three-layer array (air-tissue-air) was used, forming a semi-infinite sandwich. The light source was placed at (0,0,0), emitting towards (0,0,1). The input data were: refractive indices, target thickness (0.02, 0.05, 0.1, 0.5, and 1 cm), number of particle histories, and λ from which the code calculated: anisotropy, scattering, and absorption coefficients. Validation presents differences less than 0.1% compared with that reported in the literature. The MCLTmx code discriminates between ballistic and diffuse photons, and inside of biological tissue, it calculates: specular reflection, diffuse reflection, ballistics transmission, diffuse transmission and absorption, and all parameters dependent on wavelength and thickness. The MCLTmx code can be useful for light transport inside any medium by changing the parameters that describe the new medium: anisotropy, dispersion and attenuation coefficients, and refractive indices for specific wavelength.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kumar S, Richards-Kortum R (2006) Optical molecular imaging agents for cancer diagnostics and therapeutics. Nanomedicine 1(1):23–30CrossRefPubMed Kumar S, Richards-Kortum R (2006) Optical molecular imaging agents for cancer diagnostics and therapeutics. Nanomedicine 1(1):23–30CrossRefPubMed
2.
Zurück zum Zitat Ma X, Hui H, Shang W, Jia X, Yang X, Tian J (2015) Recent advances in optical molecular imaging and its applications in targeted drug delivery. Curr Drug Targets 16(6):542–548CrossRefPubMed Ma X, Hui H, Shang W, Jia X, Yang X, Tian J (2015) Recent advances in optical molecular imaging and its applications in targeted drug delivery. Curr Drug Targets 16(6):542–548CrossRefPubMed
6.
Zurück zum Zitat Murrer LH, Marijnissen HP, Star WM (1998) Monte Carlo simulations for endobronchial photodynamic therapy: the influence of variations in optical and geometrical properties and of realistic and eccentric light sources. Lasers Surg Med 22(4):193–206CrossRefPubMed Murrer LH, Marijnissen HP, Star WM (1998) Monte Carlo simulations for endobronchial photodynamic therapy: the influence of variations in optical and geometrical properties and of realistic and eccentric light sources. Lasers Surg Med 22(4):193–206CrossRefPubMed
7.
Zurück zum Zitat Garg T, Jain NK, Rath G, Goyal AK (2015) Nanotechnology-based photodynamic therapy: concepts, advances, and perspectives. Crit Rev Ther Drug Carrier Syst 32(5):389–439CrossRefPubMed Garg T, Jain NK, Rath G, Goyal AK (2015) Nanotechnology-based photodynamic therapy: concepts, advances, and perspectives. Crit Rev Ther Drug Carrier Syst 32(5):389–439CrossRefPubMed
8.
Zurück zum Zitat Chen Y, Ma X, Wang X, Wang S (2014) Near-infrared photon propagation in complex knee by Monte-Carlo modeling. Chin Opt Lett 12:S21701CrossRef Chen Y, Ma X, Wang X, Wang S (2014) Near-infrared photon propagation in complex knee by Monte-Carlo modeling. Chin Opt Lett 12:S21701CrossRef
9.
Zurück zum Zitat Shirkavand A, Sarkar S, Hejazi M, Ataie-Fashtami L, Reza-Alinaghizadeh M (2007) A new Monte Carlo code for absorption simulation of laser-skin tissue interaction. Chin Opt Lett 5:238 Shirkavand A, Sarkar S, Hejazi M, Ataie-Fashtami L, Reza-Alinaghizadeh M (2007) A new Monte Carlo code for absorption simulation of laser-skin tissue interaction. Chin Opt Lett 5:238
10.
Zurück zum Zitat Sweeny L, Prince A, Patel N, Moore LS, Rosenthal EL, Hughley BB, Warram JM (2016) Antiangiogenic antibody improves melanoma detection by fluorescently labeled therapeutic antibodies. Laryngoscope. doi:10.1002/lary.26215 Sweeny L, Prince A, Patel N, Moore LS, Rosenthal EL, Hughley BB, Warram JM (2016) Antiangiogenic antibody improves melanoma detection by fluorescently labeled therapeutic antibodies. Laryngoscope. doi:10.​1002/​lary.​26215
11.
Zurück zum Zitat Fernandes DA, Fernandes DD, Li Y, Wang Y, Zhang Z, Rousseau D, Gradinaru CC, Kolios MC (2016) Synthesis of stable multifunctional perfluorocarbon nanoemulsions for cancer therapy and imaging. Langmuir. doi:10.1021/acs.langmuir.6b01867 Fernandes DA, Fernandes DD, Li Y, Wang Y, Zhang Z, Rousseau D, Gradinaru CC, Kolios MC (2016) Synthesis of stable multifunctional perfluorocarbon nanoemulsions for cancer therapy and imaging. Langmuir. doi:10.​1021/​acs.​langmuir.​6b01867
13.
Zurück zum Zitat Zhang S, Wang K, Liu H, Leng C, Gao Y, Tian J (2016) Reconstruction method for in vivo bioluminescence tomography based on the split Bregman iterative and surrogate functions. Mol Imaging Biol. doi:10.1007/s11307-016-1002-5 Zhang S, Wang K, Liu H, Leng C, Gao Y, Tian J (2016) Reconstruction method for in vivo bioluminescence tomography based on the split Bregman iterative and surrogate functions. Mol Imaging Biol. doi:10.​1007/​s11307-016-1002-5
15.
Zurück zum Zitat Gibson AP, Hebden JC, Arridge SR (2005) Recent advances in diffuse optical imaging. Phys Med Biol 50:R1–R43CrossRefPubMed Gibson AP, Hebden JC, Arridge SR (2005) Recent advances in diffuse optical imaging. Phys Med Biol 50:R1–R43CrossRefPubMed
22.
Zurück zum Zitat Ma X, Lu JQ, Ding H, Hu XH (2005) Bulk optical parameters of porcine skin dermis at eight wavelengths from 325 to 1557 nm. Opt Lett 30(4):412–414CrossRefPubMed Ma X, Lu JQ, Ding H, Hu XH (2005) Bulk optical parameters of porcine skin dermis at eight wavelengths from 325 to 1557 nm. Opt Lett 30(4):412–414CrossRefPubMed
24.
25.
Zurück zum Zitat Cheong W-f, Prahl SA, Welch AJ (1993) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26(12):2166–2185CrossRef Cheong W-f, Prahl SA, Welch AJ (1993) A review of the optical properties of biological tissues. IEEE J Quantum Electron 26(12):2166–2185CrossRef
26.
Zurück zum Zitat Prahl SA, Keijzer M, Jacques SL, Welch AJ (1989) A Monte Carlo model of light propagation in tissue. SPIE Proc Dosim Laser Radiat Med Biol IS 5:102–111 Prahl SA, Keijzer M, Jacques SL, Welch AJ (1989) A Monte Carlo model of light propagation in tissue. SPIE Proc Dosim Laser Radiat Med Biol IS 5:102–111
27.
Zurück zum Zitat Wang LV, Wu H-I (2007) Biomedical optics: principles and imaging. John Wiley and Sons, New Jersey Wang LV, Wu H-I (2007) Biomedical optics: principles and imaging. John Wiley and Sons, New Jersey
28.
Zurück zum Zitat Dunsby C, French PMW (2003) Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J Phys D Appl Phys 36:R207–R227CrossRef Dunsby C, French PMW (2003) Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J Phys D Appl Phys 36:R207–R227CrossRef
29.
Zurück zum Zitat Andersen PE, Jørgensen TM, Thrane L, Tycho A, Yura HT (2008) In optical coherence tomography. Springer, Technology and Applications Andersen PE, Jørgensen TM, Thrane L, Tycho A, Yura HT (2008) In optical coherence tomography. Springer, Technology and Applications
30.
Zurück zum Zitat Badon A, Li D, Lerosey G, Boccara AC, Fink M, Aubry A (2016) Smart optical coherence tomography for ultra-deep imaging through highly scattering media. Sci Adv 2(11):e1600370CrossRefPubMedPubMedCentral Badon A, Li D, Lerosey G, Boccara AC, Fink M, Aubry A (2016) Smart optical coherence tomography for ultra-deep imaging through highly scattering media. Sci Adv 2(11):e1600370CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fijimoto JG (1991) Optical coherence tomography. Science 254(5035):1178–1181CrossRefPubMedPubMedCentral Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fijimoto JG (1991) Optical coherence tomography. Science 254(5035):1178–1181CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Drexler W, Fujimoto JG (2008) Biological and Medical Physics, Biomedical Engineering, Optical Coherence Tomography, Technology and its Applications. Springer-Verlag Berlin Heidelberg. Drexler W, Fujimoto JG (2008) Biological and Medical Physics, Biomedical Engineering, Optical Coherence Tomography, Technology and its Applications. Springer-Verlag Berlin Heidelberg.
35.
Zurück zum Zitat Liu H, Hu Z, Liu M, Tian J (2016) Forward-backward pursuit algorithm for Cerenkov luminescence tomography. Conf Proc IEEE Eng Med Biol Soc 2016:2889–2892. doi:10.1109/EMBC.2016.7591333 Liu H, Hu Z, Liu M, Tian J (2016) Forward-backward pursuit algorithm for Cerenkov luminescence tomography. Conf Proc IEEE Eng Med Biol Soc 2016:2889–2892. doi:10.​1109/​EMBC.​2016.​7591333
36.
Zurück zum Zitat Zhong J, Tian J, Yang X, Qin C (2011) Whole-body Cerenkov luminescence tomography with the finite element SP3 method. Ann Biomed Eng 39(6):1728–1735CrossRefPubMed Zhong J, Tian J, Yang X, Qin C (2011) Whole-body Cerenkov luminescence tomography with the finite element SP3 method. Ann Biomed Eng 39(6):1728–1735CrossRefPubMed
Metadaten
Titel
A new Monte Carlo code for light transport in biological tissue
verfasst von
Eugenio Torres-García
Rigoberto Oros-Pantoja
Liliana Aranda-Lara
Patricia Vieyra-Reyes
Publikationsdatum
29.08.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 4/2018
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-017-1713-z

Weitere Artikel der Ausgabe 4/2018

Medical & Biological Engineering & Computing 4/2018 Zur Ausgabe