Skip to main content

2020 | OriginalPaper | Buchkapitel

A New Optimal \(L^{\infty }(H^1)\)–Error Estimate of a SUSHI Scheme for the Time Fractional Diffusion Equation

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider a finite volume scheme, using the general mesh of [8], for the TFDE (time fractional diffusion equation) in any space dimension. The time discretization is performed using a uniform mesh. We prove a new discrete \(L^\infty (H^1)\)a priori estimate. Such a priori estimate is proved thanks to the use of the new tool of the discrete Laplace operator developed recently in [7]. Thanks to this a priori estimate, we prove a new optimal convergence order in the discrete \(L^\infty (H^1)\)–norm. These results improve the ones of [1, 4] which dealt respectively with finite volume and GDM (Gradient Discretization Method) for the TFDE. In [4], we only proved a priori estimate and error estimate in the discrete \(L^\infty (L^2)\)–norm whereas in [1] we proved a priori estimate and error estimate in the discrete \(L^2(H^1)\)–norm. The a priori estimate as well as the error estimate presented here were stated without proof for the first time in [3, Remark 1, p. 443] in the context of the general framework of GDM and [2, Remark 1, p. 205] in the context of finite volume methods. They also were mentioned, as future works, in [1, Remark 4.1].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bradji, A.: A new analysis for the convergence of the gradient discretization method for multidimensional time fractional diffusion and diffusion-wave equations. Comput. Math. Appl. 79(2), 500–520 (2020)MathSciNetCrossRef Bradji, A.: A new analysis for the convergence of the gradient discretization method for multidimensional time fractional diffusion and diffusion-wave equations. Comput. Math. Appl. 79(2), 500–520 (2020)MathSciNetCrossRef
2.
Zurück zum Zitat Bradji, A.: A second order time accurate SUSHI method for the time-fractional diffusion equation. In: Nikolov, G. et al. (ed.) Numerical Methods and Applications. 9th International Conference, NMA 2018, Borovets, Bulgaria, August 20–24, 2018. Revised Selected Papers. Lecture Notes in Computer Science, vol. 11189, pp. 197-206. Cham: Springer (2019) Bradji, A.: A second order time accurate SUSHI method for the time-fractional diffusion equation. In: Nikolov, G. et al. (ed.) Numerical Methods and Applications. 9th International Conference, NMA 2018, Borovets, Bulgaria, August 20–24, 2018. Revised Selected Papers. Lecture Notes in Computer Science, vol. 11189, pp. 197-206. Cham: Springer (2019)
3.
Zurück zum Zitat Bradji, A.: Notes on the convergence order of gradient schemes for time fractional differential equations. C. R. Math. Acad. Sci. Paris 356(4), 439–448 (2018)MathSciNetCrossRef Bradji, A.: Notes on the convergence order of gradient schemes for time fractional differential equations. C. R. Math. Acad. Sci. Paris 356(4), 439–448 (2018)MathSciNetCrossRef
4.
Zurück zum Zitat Bradji, A., Fuhrmann, J.: Convergence order of a finite volume scheme for the time-fractional diffusion equation. In: Numerical Analysis and Its Applications. Lecture Notes in Computer Science, vol. 10187, pp. 33–45. Springer, Cham (2017) Bradji, A., Fuhrmann, J.: Convergence order of a finite volume scheme for the time-fractional diffusion equation. In: Numerical Analysis and Its Applications. Lecture Notes in Computer Science, vol. 10187, pp. 33–45. Springer, Cham (2017)
5.
Zurück zum Zitat Bradji, A., Fuhrmann, J.: Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes. Appl. Math. 58(1), 1–38 (2013)MathSciNetCrossRef Bradji, A., Fuhrmann, J.: Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes. Appl. Math. 58(1), 1–38 (2013)MathSciNetCrossRef
6.
Zurück zum Zitat Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The Gradient Discretisation Method. Mathématiques et Applications, vol. 82. Springer Nature Switzerland AG, Basel, Switzerland (2018) Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The Gradient Discretisation Method. Mathématiques et Applications, vol. 82. Springer Nature Switzerland AG, Basel, Switzerland (2018)
7.
Zurück zum Zitat Eymard, R., Gallouët, T., Herbin, R., Linke, A.: Finite volume schemes for the biharmonic problem on general meshes. Math. Comput. 81(280), 2019–2048 (2012)MathSciNetCrossRef Eymard, R., Gallouët, T., Herbin, R., Linke, A.: Finite volume schemes for the biharmonic problem on general meshes. Math. Comput. 81(280), 2019–2048 (2012)MathSciNetCrossRef
8.
Zurück zum Zitat Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. IMA J. Numer. Anal. 30(4), 1009–1043 (2010)MathSciNetCrossRef Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. IMA J. Numer. Anal. 30(4), 1009–1043 (2010)MathSciNetCrossRef
9.
Zurück zum Zitat Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)MathSciNetCrossRef Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)MathSciNetCrossRef
10.
Zurück zum Zitat Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRef Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRef
11.
Zurück zum Zitat Sidi Ammi, M.R., Jamiai, I., Torres, D.F.M.: A finite element approximation for a class of Caputo time-fractional diffusion equations. Comput. Math. Appl. 78(5), 1334–1344 (2019)MathSciNetCrossRef Sidi Ammi, M.R., Jamiai, I., Torres, D.F.M.: A finite element approximation for a class of Caputo time-fractional diffusion equations. Comput. Math. Appl. 78(5), 1334–1344 (2019)MathSciNetCrossRef
12.
Zurück zum Zitat Xu, Q., Zheng, Z.: Discontinuous Galerkin method for time fractional diffusion equation. J. Inf. Comput. Sci. 10(11), 3253–3264 (2013)CrossRef Xu, Q., Zheng, Z.: Discontinuous Galerkin method for time fractional diffusion equation. J. Inf. Comput. Sci. 10(11), 3253–3264 (2013)CrossRef
Metadaten
Titel
A New Optimal –Error Estimate of a SUSHI Scheme for the Time Fractional Diffusion Equation
verfasst von
Abdallah Bradji
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-43651-3_27