Skip to main content

2021 | OriginalPaper | Buchkapitel

6. A New Perspective on Growth of GaN from the Basic Ammonothermal Regime

verfasst von : Elke Meissner, Dietmar Jockel, Martina Koch, Rainer Niewa

Erschienen in: Ammonothermal Synthesis and Crystal Growth of Nitrides

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Although the crystal growth of GaN under ammonothermal conditions is being performed for quite some years now, the physical processes going on in the autoclave are still debated. Insight in the autoclave by in situ techniques is difficult and numerical simulations are based on physical models where the experimental prove is eventually vague. This chapter reports a period of experimental work leading to a new vision of the basic ammonothermal process. We shortly summarize the 3D thermal- and transport model and a first chemical model. Subsequently, we propose an alternative picture for the ammonobasic crystal growth of GaN, which not only leads to consequences with regard to required pressures and temperatures but also to a potential new growth process. The proposed hypothesis and empirical model involves the presence of a liquid phase in the autoclave in form of an amidogallate complex.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Meneghesso, M. Meneghini, E. Zanoni, Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion (Springer International Publishing, 2018) G. Meneghesso, M. Meneghini, E. Zanoni, Gallium Nitride-enabled High Frequency and High Efficiency Power Conversion (Springer International Publishing, 2018)
2.
Zurück zum Zitat H. Amano et al., The 2018 GaN power electronics roadmap, 1. Manufacturing challenges of GaN-on-Si HEMTs in a 200 mm CMOS fab. J. Phys. D: Appl. Phys. 51, 163001 (2018) H. Amano et al., The 2018 GaN power electronics roadmap, 1. Manufacturing challenges of GaN-on-Si HEMTs in a 200 mm CMOS fab. J. Phys. D: Appl. Phys. 51, 163001 (2018)
3.
Zurück zum Zitat D. Ehrentraut, N. Hoshino, Y. Kagamitani, A. Yoshikawa, T. Fukuda, H. Itoh, S. Kawabata, Temperature effect of ammonium halogenides as mineralizers on the phase stability of gallium nitride synthezised under ammonothermal conditions. J. Mater. Chem. 17, 886–893 (2007)CrossRef D. Ehrentraut, N. Hoshino, Y. Kagamitani, A. Yoshikawa, T. Fukuda, H. Itoh, S. Kawabata, Temperature effect of ammonium halogenides as mineralizers on the phase stability of gallium nitride synthezised under ammonothermal conditions. J. Mater. Chem. 17, 886–893 (2007)CrossRef
4.
Zurück zum Zitat D. Ehrentraut, M. Bockowski, E. Meissner, Technology of Gallium Nitride Crystal Growth (Springer, Berlin, New York, 2010) D. Ehrentraut, M. Bockowski, E. Meissner, Technology of Gallium Nitride Crystal Growth (Springer, Berlin, New York, 2010)
5.
Zurück zum Zitat A. Tenten, Amide und Nitride von Nickel, Palladium und Platin sowie von Aluminium, Gallium und Indium. Doctoral Dissertation, Universität Dortmund (1991) A. Tenten, Amide und Nitride von Nickel, Palladium und Platin sowie von Aluminium, Gallium und Indium. Doctoral Dissertation, Universität Dortmund (1991)
6.
Zurück zum Zitat R. Guarino, J. Rouxel, L’amidogallate de potassium KGa(NH2)4 et l’imidogallate KGa(NH)2. L’obtention de l’amidure de gallium Ga(NH2)3. Bull. Soc. Chim. Fr. 7, 2284–2287 (1969) R. Guarino, J. Rouxel, L’amidogallate de potassium KGa(NH2)4 et l’imidogallate KGa(NH)2. L’obtention de l’amidure de gallium Ga(NH2)3. Bull. Soc. Chim. Fr. 7, 2284–2287 (1969)
7.
Zurück zum Zitat S. Zhang, Intermediates During the Formation of GaN under Ammonothermal Conditions. Doctoral Dissertation, Universität Stuttgart (2014) S. Zhang, Intermediates During the Formation of GaN under Ammonothermal Conditions. Doctoral Dissertation, Universität Stuttgart (2014)
8.
Zurück zum Zitat J. Erlekampf, J. Seebeck, P. Savva, E. Meissner, J. Friedrich, N.S. Alt, E. Schlücker, L. Frey, Numerical time-dependent 3D simulation of flow pattern and heat distribution in an ammonothermal system with various baffle shapes. J. Crystal Growth 403, 96–104 (2014)CrossRef J. Erlekampf, J. Seebeck, P. Savva, E. Meissner, J. Friedrich, N.S. Alt, E. Schlücker, L. Frey, Numerical time-dependent 3D simulation of flow pattern and heat distribution in an ammonothermal system with various baffle shapes. J. Crystal Growth 403, 96–104 (2014)CrossRef
9.
Zurück zum Zitat J. Seebeck, P. Savva, J. Erlekampf, E. Meissner, J. Friedrich, L. Frey, Species transport by natural convection of supercritical ammonia, in Turbulence, Heat and Mass Transfer, 8, Begell House, Inc. (2015) J. Seebeck, P. Savva, J. Erlekampf, E. Meissner, J. Friedrich, L. Frey, Species transport by natural convection of supercritical ammonia, in Turbulence, Heat and Mass Transfer, 8, Begell House, Inc. (2015)
10.
Zurück zum Zitat R. Dwilinski, R. Doradziński et al., Bulk ammonothermal GaN. J. Crystal Growth 311, 3015–3018 (2009)CrossRef R. Dwilinski, R. Doradziński et al., Bulk ammonothermal GaN. J. Crystal Growth 311, 3015–3018 (2009)CrossRef
11.
Zurück zum Zitat R. Kudrawiec et al., Nonpolar GaN substrates grown by ammonothermal method. Appl. Phys. Lett. 93, 061910 (2008)CrossRef R. Kudrawiec et al., Nonpolar GaN substrates grown by ammonothermal method. Appl. Phys. Lett. 93, 061910 (2008)CrossRef
12.
Zurück zum Zitat T. Hashimoto, M. Saito et al., Seeded growth of GaN by the basic ammonthermal method. J. Cryst. Growth 305, 311–316 (2007)CrossRef T. Hashimoto, M. Saito et al., Seeded growth of GaN by the basic ammonthermal method. J. Cryst. Growth 305, 311–316 (2007)CrossRef
13.
Zurück zum Zitat M. Saito, D.S. Kamber, Plane dependent growth of GaN in supercritical basic ammonia. Appl. Phys. Express 1, 121103 (2008)CrossRef M. Saito, D.S. Kamber, Plane dependent growth of GaN in supercritical basic ammonia. Appl. Phys. Express 1, 121103 (2008)CrossRef
14.
Zurück zum Zitat B. Wang, M.J. Callahan, K.D. Rakes, L.O. Bouthillette, S.-Q. Wang, D.F. Bliss, J.W. Kolis, Ammonothermal growth of GaN crystals in alkaline solutions. J. Cryst. Growth 287, 376–380 (2006)CrossRef B. Wang, M.J. Callahan, K.D. Rakes, L.O. Bouthillette, S.-Q. Wang, D.F. Bliss, J.W. Kolis, Ammonothermal growth of GaN crystals in alkaline solutions. J. Cryst. Growth 287, 376–380 (2006)CrossRef
15.
Zurück zum Zitat T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, Growth of bulk GaN crystals by the basic ammonothermal method. Jpn. J. Appl. Phys. 2, 889–891 (2007)CrossRef T. Hashimoto, F. Wu, J.S. Speck, S. Nakamura, Growth of bulk GaN crystals by the basic ammonothermal method. Jpn. J. Appl. Phys. 2, 889–891 (2007)CrossRef
16.
Zurück zum Zitat D. Bliss, B. Wang, M. Suscavage et al., Ammonothermal GaN: morphology and properties. J. Cryst. Growth 312, 1069–1073 (2010)CrossRef D. Bliss, B. Wang, M. Suscavage et al., Ammonothermal GaN: morphology and properties. J. Cryst. Growth 312, 1069–1073 (2010)CrossRef
17.
Zurück zum Zitat D. Tomida, Y. Kagamitani, Q. Bao, K. Hazu, H. Sawayama, S.F. Chichibu, C. Yokoyama, T. Fukuda, T. Ishiguro, Enhanced growth rate for ammonothermal gallium nitride crystal growth using ammonium iodide mineralizer. J. Cryst. Growth 353, 59–62 (2012)CrossRef D. Tomida, Y. Kagamitani, Q. Bao, K. Hazu, H. Sawayama, S.F. Chichibu, C. Yokoyama, T. Fukuda, T. Ishiguro, Enhanced growth rate for ammonothermal gallium nitride crystal growth using ammonium iodide mineralizer. J. Cryst. Growth 353, 59–62 (2012)CrossRef
18.
Zurück zum Zitat R. Kucharski, M. Zając, R. Doradziński, M. Rudziński, R. Kudrawiec, R. Dwiliński, Non-polar and semi-polar ammonothermal GaN substrates. Semicond. Sci. Technol. 27, 024007 (2012)CrossRef R. Kucharski, M. Zając, R. Doradziński, M. Rudziński, R. Kudrawiec, R. Dwiliński, Non-polar and semi-polar ammonothermal GaN substrates. Semicond. Sci. Technol. 27, 024007 (2012)CrossRef
19.
Zurück zum Zitat G.G.C. Arízaga, G.S. Herrera, A.M. Fischer, O.E.C. López, Influence of reaction conditions on the growth of GaN rods in an ammono-CVD reactor. J. Cryst. Growth 319, 19–24 (2011)CrossRef G.G.C. Arízaga, G.S. Herrera, A.M. Fischer, O.E.C. López, Influence of reaction conditions on the growth of GaN rods in an ammono-CVD reactor. J. Cryst. Growth 319, 19–24 (2011)CrossRef
20.
Zurück zum Zitat T. Li, G. Ren et al., Growth behavior of ammonothermal GaN crystals grown on non-polar and semi-polar HVPE GaN seeds. Cryst. Eng. Comm. 21, 4874–4879 (2019)CrossRef T. Li, G. Ren et al., Growth behavior of ammonothermal GaN crystals grown on non-polar and semi-polar HVPE GaN seeds. Cryst. Eng. Comm. 21, 4874–4879 (2019)CrossRef
21.
Zurück zum Zitat P. Hartman, W.G. Perdock, On the relations between structure and morphology of crystals. I, Acta Crystallogr. 8, 49–52 (1955)CrossRef P. Hartman, W.G. Perdock, On the relations between structure and morphology of crystals. I, Acta Crystallogr. 8, 49–52 (1955)CrossRef
22.
Zurück zum Zitat R.F.P. Grimbergen, H. Meekes, P. Bennema, C.S. Strom, L.J.P. Vogels, On the prediction of crystal morphology. I. The Hartman-Perdok theory revisited. Acta Crystallogr. A 54, 491–500 (1998)CrossRef R.F.P. Grimbergen, H. Meekes, P. Bennema, C.S. Strom, L.J.P. Vogels, On the prediction of crystal morphology. I. The Hartman-Perdok theory revisited. Acta Crystallogr. A 54, 491–500 (1998)CrossRef
23.
Zurück zum Zitat P. Bennema, H. Meekes, S.X.M. Boerrigter, H.M. Cuppen, M.A. Deij, J. van Eupen, P. Verwer, E. Vlieg, Crystal growth and morphology: new developments in an integrated Hartman−Perdok connected net roughening transition theory, supported by computer simulations. Cryst. Growth & Design 4, 905–913 (2004)CrossRef P. Bennema, H. Meekes, S.X.M. Boerrigter, H.M. Cuppen, M.A. Deij, J. van Eupen, P. Verwer, E. Vlieg, Crystal growth and morphology: new developments in an integrated Hartman−Perdok connected net roughening transition theory, supported by computer simulations. Cryst. Growth & Design 4, 905–913 (2004)CrossRef
24.
Zurück zum Zitat L.N. Rashkovich, G.T. Moldazhanova, Growth kinetics and bipyramid-face morphology of KDP crystals, in Growth of Crystals, vol. 20, ed. by E.I. Givargizov, A.M. Melnikova (Springer, Boston, MA, 1996) L.N. Rashkovich, G.T. Moldazhanova, Growth kinetics and bipyramid-face morphology of KDP crystals, in Growth of Crystals, vol. 20, ed. by E.I. Givargizov, A.M. Melnikova (Springer, Boston, MA, 1996)
25.
Zurück zum Zitat M. Rak, N.N. Eremin, T.A. Eremina et al., On the mechanism of impurity influence on growth kinetics and surface morphology of KDP crystals-I. J. Cryst. Growth 273, 577–585 (2005)CrossRef M. Rak, N.N. Eremin, T.A. Eremina et al., On the mechanism of impurity influence on growth kinetics and surface morphology of KDP crystals-I. J. Cryst. Growth 273, 577–585 (2005)CrossRef
26.
Zurück zum Zitat T.A. Eremina, V.A. Kuznetsov, N.N. Eremin, T.M. Okhrimenko, N.G. Furmanova, E.P. Efremova, M. Rak, On the mechanism of impurity influence on growth kinetics and surface morphology of KDP crystals-II. J. Cryst. Growth 273, 586–593 (2005)CrossRef T.A. Eremina, V.A. Kuznetsov, N.N. Eremin, T.M. Okhrimenko, N.G. Furmanova, E.P. Efremova, M. Rak, On the mechanism of impurity influence on growth kinetics and surface morphology of KDP crystals-II. J. Cryst. Growth 273, 586–593 (2005)CrossRef
27.
Zurück zum Zitat F. Abbona, D. Aquilano, Morphology of crystals grown from solutions, in Springer Handbook of Crystal Growth (Springer, Berlin, Heidelberg, 2010). ISBN 978-3-540-74182-4 F. Abbona, D. Aquilano, Morphology of crystals grown from solutions, in Springer Handbook of Crystal Growth (Springer, Berlin, Heidelberg, 2010). ISBN 978-3-540-74182-4
28.
Zurück zum Zitat S. Pimputkar, S. Kawabata, J.S. Speck, S. Nakamura, Improved growth rates and purity of basic ammonothermal GaN. J. Cryst. Growth 403, 7–17 (2014)CrossRef S. Pimputkar, S. Kawabata, J.S. Speck, S. Nakamura, Improved growth rates and purity of basic ammonothermal GaN. J. Cryst. Growth 403, 7–17 (2014)CrossRef
29.
Zurück zum Zitat D. Ehrentraut, R. T. Pakalapati, D. S. Kamber, W. Jiang, D. W. Pocius, B. C. Downey, M. McLaurin, M. P. D’Evelyn, High quality, low cost ammonothermal bulk GaN substrates. Jpn. J. Appl. Phys. 52, 08JA01 (2013) D. Ehrentraut, R. T. Pakalapati, D. S. Kamber, W. Jiang, D. W. Pocius, B. C. Downey, M. McLaurin, M. P. D’Evelyn, High quality, low cost ammonothermal bulk GaN substrates. Jpn. J. Appl. Phys. 52, 08JA01 (2013)
30.
Zurück zum Zitat N.S.A. Alt, E. Meissner, E. Schluecker, In situ monitoring technologies for ammonothermal reactors. Phys. Status Solidi C 9, 436–439 (2012)CrossRef N.S.A. Alt, E. Meissner, E. Schluecker, In situ monitoring technologies for ammonothermal reactors. Phys. Status Solidi C 9, 436–439 (2012)CrossRef
31.
Zurück zum Zitat Q.-S. Chen, V. Prasad, W.R. Hu, Modeling of ammonothermal growth of nitrides. J. Cryst. Growth 258, 181–187 (2003)CrossRef Q.-S. Chen, V. Prasad, W.R. Hu, Modeling of ammonothermal growth of nitrides. J. Cryst. Growth 258, 181–187 (2003)CrossRef
32.
Zurück zum Zitat Y. Masuda, A. Suzuki,T. Ishiguro, Y. Chiaki, Numerical simulation of heat and fluid flow in ammonothermal GaN bulk crystal growth process. Jpn. J. Appl. Phys. 52, 08JA05 (2013) Y. Masuda, A. Suzuki,T. Ishiguro, Y. Chiaki, Numerical simulation of heat and fluid flow in ammonothermal GaN bulk crystal growth process. Jpn. J. Appl. Phys. 52, 08JA05 (2013)
33.
Zurück zum Zitat Y.-N. Jiang, Q.-S. Chen, V. Prasad, Numerical simulation of ammonothermal growth processes of GaN crystals. J. Cryst. Growth 318, 411–414 (2011)CrossRef Y.-N. Jiang, Q.-S. Chen, V. Prasad, Numerical simulation of ammonothermal growth processes of GaN crystals. J. Cryst. Growth 318, 411–414 (2011)CrossRef
34.
Zurück zum Zitat S. Pendurtia, Q.-S. Chen, V. Prasad, Modeling ammonothermal growth of GaN single crystals: the role of transport. J. Cryst. Growth 296, 150–158 (2006)CrossRef S. Pendurtia, Q.-S. Chen, V. Prasad, Modeling ammonothermal growth of GaN single crystals: the role of transport. J. Cryst. Growth 296, 150–158 (2006)CrossRef
35.
Zurück zum Zitat S. Zhang, N.S.A. Alt, E. Schlücker, R. Niewa, Novel alkali metal amidogallates as intermediates in ammonothermal GaN crystal growth. J. Cryst. Growth 403, 22–28 (2014)CrossRef S. Zhang, N.S.A. Alt, E. Schlücker, R. Niewa, Novel alkali metal amidogallates as intermediates in ammonothermal GaN crystal growth. J. Cryst. Growth 403, 22–28 (2014)CrossRef
36.
Zurück zum Zitat P. Molinie, R. Brec, J. Rouxel, P. Herpin, Structures des amidoaluminates alcalins MAl(NH2)4 (M = Na, K, Cs). Structure de l’ amidogallate de sodium NaGa(NH2)4. Acta Crystallogr. B 29, 925–934 (1973) P. Molinie, R. Brec, J. Rouxel, P. Herpin, Structures des amidoaluminates alcalins MAl(NH2)4 (M = Na, K, Cs). Structure de l’ amidogallate de sodium NaGa(NH2)4. Acta Crystallogr. B 29, 925–934 (1973)
37.
Zurück zum Zitat B. Wang, M.J. Callahan, Transport growth of GaN crystals by the ammonothermal technique using various nutrients. J. Cryst. Growth 291, 455–460 (2006)CrossRef B. Wang, M.J. Callahan, Transport growth of GaN crystals by the ammonothermal technique using various nutrients. J. Cryst. Growth 291, 455–460 (2006)CrossRef
38.
Zurück zum Zitat J. Hertrampf, E. Schlücker, D. Gudat, R. Niewa, Dissolved intermediates in ammonothermal crystal growth: stepwise condensation of [Ga(NH2)4]− toward GaN. Cryst. Growth Des. 17, 4855–4863 (2017)CrossRef J. Hertrampf, E. Schlücker, D. Gudat, R. Niewa, Dissolved intermediates in ammonothermal crystal growth: stepwise condensation of [Ga(NH2)4] toward GaN. Cryst. Growth Des. 17, 4855–4863 (2017)CrossRef
39.
Zurück zum Zitat S. Schimmel, M. Lindner, T.G. Steigerwald, B. Hertweck, T.M.M. Richter, U. Künecke, N.S.A. Alt, R. Niewa, E. Schlücker, P. Wellmann, Determination of GaN solubility in supercritical ammonia with NH4F and NH4Cl mineralizer by in situ x-ray imaging of crystal dissolution. J. Cryst. Growth 418, 64–69 (2015)CrossRef S. Schimmel, M. Lindner, T.G. Steigerwald, B. Hertweck, T.M.M. Richter, U. Künecke, N.S.A. Alt, R. Niewa, E. Schlücker, P. Wellmann, Determination of GaN solubility in supercritical ammonia with NH4F and NH4Cl mineralizer by in situ x-ray imaging of crystal dissolution. J. Cryst. Growth 418, 64–69 (2015)CrossRef
Metadaten
Titel
A New Perspective on Growth of GaN from the Basic Ammonothermal Regime
verfasst von
Elke Meissner
Dietmar Jockel
Martina Koch
Rainer Niewa
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-56305-9_6