Skip to main content

13.02.2025 | Original Paper

A new protection scheme for loss of excitation based on CNN

verfasst von: Mahsa Hosseini, Zahra Moravej, Mohammad Pazoki

Erschienen in: Electrical Engineering

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

If a loss of excitation (LOE) occurs in a synchronous generator, this leads to a reduction in the output voltage and to a considerable absorption of reactive power from the system. This can cause severe damage to both the generator and the power system. Conventional methods often suffer from low speed and are susceptible to disturbances from events such as stable power swings (SPS), three-phase faults or partial loss of excitation (PLOE) on the power system. It is important that the relay can accurately distinguish between these phenomena and LOE. In this paper, a novel intelligent method is proposed to improve the speed and sensitivity of LOE detection and protection of synchronous generators. The proposed scheme utilizes a convolutional neural network (CNN) in a Python environment, eliminating the need for separate signal preprocessing and feature extraction. The simulation of the example system and the protection system was carried out in the MATLAB/Simulink software environment. By using CNN, the proposed scheme reduces the detection time to 0.96 s and achieves an overall accuracy of 96.47% in the presence of all the mentioned phenomena. It also achieves an overall accuracy of 99.12% regardless of PLOE. It improves the efficiency and accuracy of LOE detection and effectively differentiates it from SPS, three-phase faults, and partial LOE. In addition, the CNN method recognizes multiple phenomena in the power system phenomena and improves accuracy and speed. This tailored approach highlights potential advances in power system protection and monitoring and illustrates the advantages of a 1-dimensional convolutional neural network (1D CNN) for analyzing time series data in this context.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Jankee P, Oyedokun DT, Chisepo HK (2022) Dynamic response of power systems with real GICs: impact on generator excitation control. IEEE Trans Power Deliv 37(6):4911–4922MATHCrossRef Jankee P, Oyedokun DT, Chisepo HK (2022) Dynamic response of power systems with real GICs: impact on generator excitation control. IEEE Trans Power Deliv 37(6):4911–4922MATHCrossRef
3.
Zurück zum Zitat Krishna VM et al (2022) Experimental investigation on performance comparison of self-excited induction generator and permanent magnet synchronous generator for small scale renewable energy applications. Renew Energy 195:431–441MATHCrossRef Krishna VM et al (2022) Experimental investigation on performance comparison of self-excited induction generator and permanent magnet synchronous generator for small scale renewable energy applications. Renew Energy 195:431–441MATHCrossRef
4.
Zurück zum Zitat Guo Z et al (2020) Synchronous condenser’s loss of excitation and its impact on the performance of UHVDC. Energies 13(18):4926MATHCrossRef Guo Z et al (2020) Synchronous condenser’s loss of excitation and its impact on the performance of UHVDC. Energies 13(18):4926MATHCrossRef
5.
Zurück zum Zitat Chatterjee S, Das D, Bhattacharjee K (2022) a high-speed method for loss of excitation detection. In: 2022 IEEE global conference on computing, power and communication technologies (GlobConPT). IEEE Chatterjee S, Das D, Bhattacharjee K (2022) a high-speed method for loss of excitation detection. In: 2022 IEEE global conference on computing, power and communication technologies (GlobConPT). IEEE
6.
Zurück zum Zitat Reimert D (2017) Protective relaying for power generation systems. CRC Press, Boco RatonCrossRef Reimert D (2017) Protective relaying for power generation systems. CRC Press, Boco RatonCrossRef
7.
Zurück zum Zitat Horowitz SH, Phadke AG, Henville CF (2022) Power system relaying. Wiley, New YorkMATH Horowitz SH, Phadke AG, Henville CF (2022) Power system relaying. Wiley, New YorkMATH
8.
Zurück zum Zitat Afshar M et al (2022) Analyzing performance of relays for high impedance fault (HIF) detection using hardware-in-the-loop (HIL) platform. Electric Power Syst Res 209:108027MATHCrossRef Afshar M et al (2022) Analyzing performance of relays for high impedance fault (HIF) detection using hardware-in-the-loop (HIL) platform. Electric Power Syst Res 209:108027MATHCrossRef
9.
Zurück zum Zitat Zimann FJ et al (2019) Energy storage system control algorithm for voltage regulation with active and reactive power injection in low-voltage distribution network. Electric Power Syst Res 174:105825MATHCrossRef Zimann FJ et al (2019) Energy storage system control algorithm for voltage regulation with active and reactive power injection in low-voltage distribution network. Electric Power Syst Res 174:105825MATHCrossRef
10.
Zurück zum Zitat Li J et al (2020) Optimal reactive power dispatch of permanent magnet synchronous generator-based wind farm considering levelised production cost minimization. Renew Energy 145:1–12CrossRef Li J et al (2020) Optimal reactive power dispatch of permanent magnet synchronous generator-based wind farm considering levelised production cost minimization. Renew Energy 145:1–12CrossRef
11.
Zurück zum Zitat Ramadoss H, Muthiah G (2023) Machine learning approach to differentiate excitation failure in synchronous generators from power swing. Electr Eng 105:1–14MATHCrossRef Ramadoss H, Muthiah G (2023) Machine learning approach to differentiate excitation failure in synchronous generators from power swing. Electr Eng 105:1–14MATHCrossRef
12.
Zurück zum Zitat Marchi P et al (2020) Loss of excitation detection in synchronous generators based on dynamic state estimation. IEEE Trans Energy Convers 35(3):1606–1616MATHCrossRef Marchi P et al (2020) Loss of excitation detection in synchronous generators based on dynamic state estimation. IEEE Trans Energy Convers 35(3):1606–1616MATHCrossRef
13.
Zurück zum Zitat Sarangi S, Sahu BK, Rout PK (2021) A comprehensive review of distribution generation integrated DC microgrid protection: issues, strategies, and future direction. Int J Energy Res 45(4):5006–5031MATHCrossRef Sarangi S, Sahu BK, Rout PK (2021) A comprehensive review of distribution generation integrated DC microgrid protection: issues, strategies, and future direction. Int J Energy Res 45(4):5006–5031MATHCrossRef
14.
Zurück zum Zitat Rajalwal NK, Ghosh D (2020) Recent trends in integrity protection of power system: a literature review. Int Trans Electr Energy Syst 30(10):e12523CrossRef Rajalwal NK, Ghosh D (2020) Recent trends in integrity protection of power system: a literature review. Int Trans Electr Energy Syst 30(10):e12523CrossRef
15.
Zurück zum Zitat Azari MN (2018) A setting-free flux-based synchronous generator loss of excitation protection. Electr Eng 100(4):2329–2339MATHCrossRef Azari MN (2018) A setting-free flux-based synchronous generator loss of excitation protection. Electr Eng 100(4):2329–2339MATHCrossRef
16.
Zurück zum Zitat Rostami A et al (2022) Load angle based loss of excitation protection scheme for parallel connected synchronous generators. IEEE Trans Ind Appl 58(6):6960–6969MATHCrossRef Rostami A et al (2022) Load angle based loss of excitation protection scheme for parallel connected synchronous generators. IEEE Trans Ind Appl 58(6):6960–6969MATHCrossRef
17.
Zurück zum Zitat Dewangan B, Yadav A (2021) Fuzzy-based detection of complete or partial loss of excitation in synchronous generator. In: 2021 4th International conference on recent developments in control, automation & power engineering (RDCAPE). IEEE Dewangan B, Yadav A (2021) Fuzzy-based detection of complete or partial loss of excitation in synchronous generator. In: 2021 4th International conference on recent developments in control, automation & power engineering (RDCAPE). IEEE
18.
Zurück zum Zitat Kiaei I, Lotfifard S, Bose A (2018) Secure loss of excitation detection method for synchronous generators during power swing conditions. IEEE Trans Energy Convers 33(4):1907–1916MATHCrossRef Kiaei I, Lotfifard S, Bose A (2018) Secure loss of excitation detection method for synchronous generators during power swing conditions. IEEE Trans Energy Convers 33(4):1907–1916MATHCrossRef
19.
Zurück zum Zitat Mostafaei M, Faiz J (2021) An overview of various faults detection methods in synchronous generators. IET Electr Power Appl 15(4):391–404MATHCrossRef Mostafaei M, Faiz J (2021) An overview of various faults detection methods in synchronous generators. IET Electr Power Appl 15(4):391–404MATHCrossRef
20.
Zurück zum Zitat Noroozi N, Yaghobi H, Alinejad-Beromi Y (2017) Analytical technique for synchronous generator loss-of-excitation protection. IET Gener Transm Distrib 11(9):2222–2231MATHCrossRef Noroozi N, Yaghobi H, Alinejad-Beromi Y (2017) Analytical technique for synchronous generator loss-of-excitation protection. IET Gener Transm Distrib 11(9):2222–2231MATHCrossRef
21.
Zurück zum Zitat Noroozi N, Alinejad-Beromi Y, Yaghobi H (2019) Fast approach to detect generator loss of excitation based on reactive power variation. IET Gener Transm Distrib 13(4):453–460MATHCrossRef Noroozi N, Alinejad-Beromi Y, Yaghobi H (2019) Fast approach to detect generator loss of excitation based on reactive power variation. IET Gener Transm Distrib 13(4):453–460MATHCrossRef
22.
Zurück zum Zitat Mahamedi B, Zhu JG, Hashemi SM (2015) A setting-free approach to detecting loss of excitation in synchronous generators. IEEE Trans Power Deliv 31(5):2270–2278MATHCrossRef Mahamedi B, Zhu JG, Hashemi SM (2015) A setting-free approach to detecting loss of excitation in synchronous generators. IEEE Trans Power Deliv 31(5):2270–2278MATHCrossRef
23.
Zurück zum Zitat Aziz MA et al (2016) Loss of excitation detection in hydro-generators based on ANFIS approach using positive sequence components. In: 2016 XIX IEEE International conference on soft computing and measurements (SCM). IEEE Aziz MA et al (2016) Loss of excitation detection in hydro-generators based on ANFIS approach using positive sequence components. In: 2016 XIX IEEE International conference on soft computing and measurements (SCM). IEEE
24.
Zurück zum Zitat Ostojić M, Djurić M (2018) The algorithm for the detection of loss of excitation of synchronous generators based on a digital-phase comparator. Electr Eng 100:1287–1296MATHCrossRef Ostojić M, Djurić M (2018) The algorithm for the detection of loss of excitation of synchronous generators based on a digital-phase comparator. Electr Eng 100:1287–1296MATHCrossRef
25.
Zurück zum Zitat Barakat ZA et al (2019) Discriminating between loss of excitation and power swings in synchronous generator based on ANN. J Control Autom Electr Syst 30(4):545–556MATHCrossRef Barakat ZA et al (2019) Discriminating between loss of excitation and power swings in synchronous generator based on ANN. J Control Autom Electr Syst 30(4):545–556MATHCrossRef
26.
Zurück zum Zitat Rahmkhoda E, Faiz J, Abedini M (2024) Detecting loss of excitation condition of synchronous generator in the presence of unified power flow controller based on data mining method. Electric Power Syst Res 228:109975MATHCrossRef Rahmkhoda E, Faiz J, Abedini M (2024) Detecting loss of excitation condition of synchronous generator in the presence of unified power flow controller based on data mining method. Electric Power Syst Res 228:109975MATHCrossRef
27.
Zurück zum Zitat Mitra S, Mukhopadhyay R, Chattopadhyay P (2022) PSO driven designing of robust and computation efficient 1D-CNN architecture for transmission line fault detection. Expert Syst Appl 210:118178MATHCrossRef Mitra S, Mukhopadhyay R, Chattopadhyay P (2022) PSO driven designing of robust and computation efficient 1D-CNN architecture for transmission line fault detection. Expert Syst Appl 210:118178MATHCrossRef
28.
Zurück zum Zitat Biswas S et al (2023) An intelligent fault detection and classification technique based on variational mode decomposition-CNN for transmission lines installed with UPFC and wind farm. Electric Power Syst Res 223:109526MATHCrossRef Biswas S et al (2023) An intelligent fault detection and classification technique based on variational mode decomposition-CNN for transmission lines installed with UPFC and wind farm. Electric Power Syst Res 223:109526MATHCrossRef
29.
Zurück zum Zitat Samek W et al (2021) Explaining deep neural networks and beyond: a review of methods and applications. Proc IEEE 109(3):247–278MATHCrossRef Samek W et al (2021) Explaining deep neural networks and beyond: a review of methods and applications. Proc IEEE 109(3):247–278MATHCrossRef
30.
Zurück zum Zitat Nandkeolyar S (2020) Improvement of loss of excitation protection of an alternator in the presence of shunt-FACTS–A comprehensive review. Int J Electr Power Energy Syst 114:105397MATHCrossRef Nandkeolyar S (2020) Improvement of loss of excitation protection of an alternator in the presence of shunt-FACTS–A comprehensive review. Int J Electr Power Energy Syst 114:105397MATHCrossRef
31.
Zurück zum Zitat Mohammadzadeh S, Seifossadat SG, Joorabian M (2019) Providing a new method for protecting the loss of excitation of generator in the presence of phase-shifting transformer. Int Trans Electr Energy Syst 29(6):e12023CrossRef Mohammadzadeh S, Seifossadat SG, Joorabian M (2019) Providing a new method for protecting the loss of excitation of generator in the presence of phase-shifting transformer. Int Trans Electr Energy Syst 29(6):e12023CrossRef
32.
Zurück zum Zitat Hasani A, Bak CL, da Silva FMF (2020) Performance assessment of some practical loss of excitation detection schemes employing a realistic model. Energies 13(22):5928MATHCrossRef Hasani A, Bak CL, da Silva FMF (2020) Performance assessment of some practical loss of excitation detection schemes employing a realistic model. Energies 13(22):5928MATHCrossRef
33.
Zurück zum Zitat Moravej Z, Rasooli H, Pazoki M (2019) Analysis of loss of excitation protection schemes of synchronous generators in a compensated transmission line with UPFC. Int J Elect Eng Inf 11(3):485–505MATH Moravej Z, Rasooli H, Pazoki M (2019) Analysis of loss of excitation protection schemes of synchronous generators in a compensated transmission line with UPFC. Int J Elect Eng Inf 11(3):485–505MATH
34.
Zurück zum Zitat Biswas S et al (2023) A single-pole filter assisted improved protection scheme for the TCSC compensated transmission line connecting large-scale wind farms. IEEE J Emerg Sel Top Ind Electron 5:346–358MATHCrossRef Biswas S et al (2023) A single-pole filter assisted improved protection scheme for the TCSC compensated transmission line connecting large-scale wind farms. IEEE J Emerg Sel Top Ind Electron 5:346–358MATHCrossRef
35.
Zurück zum Zitat Chaudhary S et al (2019) Convolutional neural network based approach towards motor imagery tasks EEG signals classification. IEEE Sens J 19(12):4494–4500MATHCrossRef Chaudhary S et al (2019) Convolutional neural network based approach towards motor imagery tasks EEG signals classification. IEEE Sens J 19(12):4494–4500MATHCrossRef
36.
Zurück zum Zitat Fahim SR et al (2020) Self attention convolutional neural network with time series imaging based feature extraction for transmission line fault detection and classification. Electric Power Syst Res 187:106437MATHCrossRef Fahim SR et al (2020) Self attention convolutional neural network with time series imaging based feature extraction for transmission line fault detection and classification. Electric Power Syst Res 187:106437MATHCrossRef
37.
Zurück zum Zitat Ab Wahab MN et al (2021) Efficientnet-lite and hybrid CNN-KNN implementation for facial expression recognition on raspberry pi. IEEE Access 9:134065–134080CrossRef Ab Wahab MN et al (2021) Efficientnet-lite and hybrid CNN-KNN implementation for facial expression recognition on raspberry pi. IEEE Access 9:134065–134080CrossRef
38.
Zurück zum Zitat Zhu X et al (2022) Novel wavefront detection and fault location method based on Hilbert-Huang transform for long HVDC transmission lines. Electric Power Syst Res 211:108213MATHCrossRef Zhu X et al (2022) Novel wavefront detection and fault location method based on Hilbert-Huang transform for long HVDC transmission lines. Electric Power Syst Res 211:108213MATHCrossRef
39.
Zurück zum Zitat Teng S et al (2021) Multi-sensor and decision-level fusion-based structural damage detection using a one-dimensional convolutional neural network. Sensors 21(12):3950MATHCrossRef Teng S et al (2021) Multi-sensor and decision-level fusion-based structural damage detection using a one-dimensional convolutional neural network. Sensors 21(12):3950MATHCrossRef
40.
Zurück zum Zitat Al-Saffar AAM, Tao H, Talab MA (2017) Review of deep convolution neural network in image classification. In: The 2017 international conference on radar, antenna, microwave, electronics, and telecommunications (ICRAMET). IEEE Al-Saffar AAM, Tao H, Talab MA (2017) Review of deep convolution neural network in image classification. In: The 2017 international conference on radar, antenna, microwave, electronics, and telecommunications (ICRAMET). IEEE
41.
Zurück zum Zitat Wen S et al (2020) CKFO: convolution kernel first operated algorithm with applications in memristor-based convolutional neural network. IEEE Trans Comput Aided Des Integr Circuits Syst 40(8):1640–1647MATHCrossRef Wen S et al (2020) CKFO: convolution kernel first operated algorithm with applications in memristor-based convolutional neural network. IEEE Trans Comput Aided Des Integr Circuits Syst 40(8):1640–1647MATHCrossRef
42.
Zurück zum Zitat Zafar A et al (2022) A comparison of pooling methods for convolutional neural networks. Appl Sci 12(17):8643MATHCrossRef Zafar A et al (2022) A comparison of pooling methods for convolutional neural networks. Appl Sci 12(17):8643MATHCrossRef
43.
Zurück zum Zitat Pang Y et al (2020) Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data. Renew Energy 161:510–524MATHCrossRef Pang Y et al (2020) Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data. Renew Energy 161:510–524MATHCrossRef
44.
Zurück zum Zitat Bera S, Shrivastava VK (2020) Analysis of various optimizers on deep convolutional neural network model in the application of hyperspectral remote sensing image classification. Int J Remote Sens 41(7):2664–2683MATHCrossRef Bera S, Shrivastava VK (2020) Analysis of various optimizers on deep convolutional neural network model in the application of hyperspectral remote sensing image classification. Int J Remote Sens 41(7):2664–2683MATHCrossRef
45.
Zurück zum Zitat Rasoulpour M, Amraee T, Sedigh AK (2019) A relay logic for total and partial loss of excitation protection in synchronous generators. IEEE Trans Power Deliv 35(3):1432–1442MATHCrossRef Rasoulpour M, Amraee T, Sedigh AK (2019) A relay logic for total and partial loss of excitation protection in synchronous generators. IEEE Trans Power Deliv 35(3):1432–1442MATHCrossRef
46.
Zurück zum Zitat de Morais AP, Cardoso G, Mariotto L (2010) An innovative loss-of-excitation protection based on the fuzzy inference mechanism. IEEE Trans Power Deliv 25(4):2197–2204MATHCrossRef de Morais AP, Cardoso G, Mariotto L (2010) An innovative loss-of-excitation protection based on the fuzzy inference mechanism. IEEE Trans Power Deliv 25(4):2197–2204MATHCrossRef
47.
Zurück zum Zitat Abedini M et al (2017) A loss-of-field detection relay based on rotor signals estimation. IEEE Trans Power Deliv 33(2):779–788MATHCrossRef Abedini M et al (2017) A loss-of-field detection relay based on rotor signals estimation. IEEE Trans Power Deliv 33(2):779–788MATHCrossRef
Metadaten
Titel
A new protection scheme for loss of excitation based on CNN
verfasst von
Mahsa Hosseini
Zahra Moravej
Mohammad Pazoki
Publikationsdatum
13.02.2025
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-025-02966-3