Skip to main content
Erschienen in:

17.06.2023 | Original Article

A new SPH-FEM coupling method for fluid–structure interaction using segment-based interface treatment

verfasst von: Hyung-Jun Park, Hyun-Duk Seo

Erschienen in: Engineering with Computers | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a new coupling method for the analysis of fluid–structure interaction (FSI) using smoothed particle hydrodynamics (SPH) and finite element method (FEM). Both numerical methods are based on Lagrangian framework in which deformable interfaces are handled easily. Especially, the interfaces between fluid and deformable structures can be described as segments instead of particles using the proposed method. Near the contact surfaces, the particle deficiency problem is solved by considering the truncated support domain in the proposed method. Furthermore, the proposed method does not require unnecessary fine FEM mesh for structural analysis, which solves the complexity of modeling and computational inefficiency. The performance of the proposed method is validated with various numerical examples, compared with benchmark and experiment results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ryzhakov PB, Oñate E (2017) A finite element model for fluid–structure interaction problems involving closed membranes, internal and external fluids. Comput Methods Appl Mech Eng 326:422–445MathSciNet Ryzhakov PB, Oñate E (2017) A finite element model for fluid–structure interaction problems involving closed membranes, internal and external fluids. Comput Methods Appl Mech Eng 326:422–445MathSciNet
2.
Zurück zum Zitat Daude F, Galon P (2018) A Finite-Volume approach for compressible single-and two-phase flows in flexible pipelines with fluid-structure interaction. J Comput Phys 362:375–408MathSciNet Daude F, Galon P (2018) A Finite-Volume approach for compressible single-and two-phase flows in flexible pipelines with fluid-structure interaction. J Comput Phys 362:375–408MathSciNet
3.
Zurück zum Zitat Lindeberg L, Rydin YL, Watson LM (2021) A high-order finite-difference scheme to model the fluid-structure interaction in pneumatic seismic sources. J Comput Phys 424:109849MathSciNet Lindeberg L, Rydin YL, Watson LM (2021) A high-order finite-difference scheme to model the fluid-structure interaction in pneumatic seismic sources. J Comput Phys 424:109849MathSciNet
4.
Zurück zum Zitat Ning J, Zhang H, Xu X, Ma T (2021) A novel fluid-structure interaction algorithm for compressible flows and deformable structures. J Comput Phys 426:109921MathSciNet Ning J, Zhang H, Xu X, Ma T (2021) A novel fluid-structure interaction algorithm for compressible flows and deformable structures. J Comput Phys 426:109921MathSciNet
5.
Zurück zum Zitat Kalliontzis D (2022) Fluid–structure interaction with ALE formulation and skeleton-based structural models. J Fluids Struct 110:103513 Kalliontzis D (2022) Fluid–structure interaction with ALE formulation and skeleton-based structural models. J Fluids Struct 110:103513
6.
Zurück zum Zitat Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159 Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159
7.
Zurück zum Zitat van Sint Annaland M, Deen NG, Kuipers JAM (2005) Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chem Eng Sci 60(11):2999–3011 van Sint Annaland M, Deen NG, Kuipers JAM (2005) Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method. Chem Eng Sci 60(11):2999–3011
8.
Zurück zum Zitat Yu Z, Fan LS (2009) An interaction potential based lattice Boltzmann method with adaptive mesh refinement (AMR) for two-phase flow simulation. J Comput Phys 228(17):6456–6478MathSciNet Yu Z, Fan LS (2009) An interaction potential based lattice Boltzmann method with adaptive mesh refinement (AMR) for two-phase flow simulation. J Comput Phys 228(17):6456–6478MathSciNet
9.
Zurück zum Zitat Yang Q, Jones V, McCue L (2012) Free-surface flow interaction with deformable structures using an SPH-FEM model. Ocean Eng 55:136–147 Yang Q, Jones V, McCue L (2012) Free-surface flow interaction with deformable structures using an SPH-FEM model. Ocean Eng 55:136–147
10.
Zurück zum Zitat Fan J, Liao H, Ke R, Kucukal E, Gurkan UA, Shen X, Li B (2018) A monolithic Lagrangian meshfree scheme for Fluid-Structure Interaction problems within the OTM framework. Comput Methods Appl Mech Eng 337:198–219MathSciNet Fan J, Liao H, Ke R, Kucukal E, Gurkan UA, Shen X, Li B (2018) A monolithic Lagrangian meshfree scheme for Fluid-Structure Interaction problems within the OTM framework. Comput Methods Appl Mech Eng 337:198–219MathSciNet
11.
Zurück zum Zitat Bazilevs Y, Moutsanidis G, Bueno J, Kamran K, Kamensky D, Hillman MC, Chen JS (2017) A new formulation for air-blast fluid–structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations. Comput Mech 60:101–116MathSciNet Bazilevs Y, Moutsanidis G, Bueno J, Kamran K, Kamensky D, Hillman MC, Chen JS (2017) A new formulation for air-blast fluid–structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations. Comput Mech 60:101–116MathSciNet
12.
Zurück zum Zitat Peng YX, Zhang AM, Wang SP (2021) Coupling of WCSPH and RKPM for the simulation of incompressible fluid–structure interactions. J Fluids Struct 102:103254 Peng YX, Zhang AM, Wang SP (2021) Coupling of WCSPH and RKPM for the simulation of incompressible fluid–structure interactions. J Fluids Struct 102:103254
13.
Zurück zum Zitat Kan L, Zhang X (2022) An immersed MMALE material point method for FSI problems with structure fracturing. Comput Methods Appl Mech Eng 396:115099MathSciNet Kan L, Zhang X (2022) An immersed MMALE material point method for FSI problems with structure fracturing. Comput Methods Appl Mech Eng 396:115099MathSciNet
14.
Zurück zum Zitat Rahimi MN, Kolukisa DC, Yildiz M, Ozbulut M, Kefal A (2022) A generalized hybrid smoothed particle hydrodynamics–peridynamics algorithm with a novel Lagrangian mapping for solution and failure analysis of fluid–structure interaction problems. Comput Methods Appl Mech Eng 389:114370MathSciNet Rahimi MN, Kolukisa DC, Yildiz M, Ozbulut M, Kefal A (2022) A generalized hybrid smoothed particle hydrodynamics–peridynamics algorithm with a novel Lagrangian mapping for solution and failure analysis of fluid–structure interaction problems. Comput Methods Appl Mech Eng 389:114370MathSciNet
15.
Zurück zum Zitat Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024 Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024
16.
Zurück zum Zitat Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389 Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389
17.
Zurück zum Zitat Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406 Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406
18.
Zurück zum Zitat Nguyen VT, Thanh-Hoang P, Park WG (2020) Modeling and numerical simulation of ricochet and penetration of water entry bodies using an efficient free surface model. Int J Mech Sci 182:105726 Nguyen VT, Thanh-Hoang P, Park WG (2020) Modeling and numerical simulation of ricochet and penetration of water entry bodies using an efficient free surface model. Int J Mech Sci 182:105726
19.
Zurück zum Zitat Bakti FP, Kim MH, Kim KS, Park JC (2016) Comparative study of standard WC-SPH and MPS solvers for free surface academic problems. Int J Offshore Polar Eng 26:235–243 Bakti FP, Kim MH, Kim KS, Park JC (2016) Comparative study of standard WC-SPH and MPS solvers for free surface academic problems. Int J Offshore Polar Eng 26:235–243
20.
Zurück zum Zitat Hu T, Wang S, Zhang G, Sun Z, Zhou B (2019) Numerical simulations of sloshing flows with an elastic baffle using a SPH-SPIM coupled method. Appl Ocean Res 93:101950 Hu T, Wang S, Zhang G, Sun Z, Zhou B (2019) Numerical simulations of sloshing flows with an elastic baffle using a SPH-SPIM coupled method. Appl Ocean Res 93:101950
21.
Zurück zum Zitat Monaghan JJ, Kocharyan A (1995) SPH simulation of multi-phase flow. Comput Phys Commun 87:225–235 Monaghan JJ, Kocharyan A (1995) SPH simulation of multi-phase flow. Comput Phys Commun 87:225–235
22.
Zurück zum Zitat Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191:448–475 Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191:448–475
23.
Zurück zum Zitat Hu XY, Adams NA (2007) An incompressible multi-phase SPH method. J Comput Phys 227:264–278 Hu XY, Adams NA (2007) An incompressible multi-phase SPH method. J Comput Phys 227:264–278
24.
Zurück zum Zitat Shao S (2012) Incompressible smoothed particle hydrodynamics simulation of multifluid flows. Int J Numer Meth Fluids 69:1715–1735MathSciNet Shao S (2012) Incompressible smoothed particle hydrodynamics simulation of multifluid flows. Int J Numer Meth Fluids 69:1715–1735MathSciNet
25.
Zurück zum Zitat Yang Q, Xu F, Yang Y, Wang L (2020) A multi-phase SPH model based on Riemann solvers for simulation of jet breakup. Eng Anal Bound Elem 111:134–147MathSciNet Yang Q, Xu F, Yang Y, Wang L (2020) A multi-phase SPH model based on Riemann solvers for simulation of jet breakup. Eng Anal Bound Elem 111:134–147MathSciNet
26.
Zurück zum Zitat Yang X, Kong SC (2017), Smoothed particle hydrodynamics method for evaporating multiphase flows. Phys Rev E. 96(3), 033309. Yang X, Kong SC (2017), Smoothed particle hydrodynamics method for evaporating multiphase flows. Phys Rev E. 96(3), 033309.
27.
Zurück zum Zitat Yang X, Kong SC (2019) Adaptive resolution for multiphase smoothed particle hydrodynamics. Comput Phys Commun 239:112–125MathSciNet Yang X, Kong SC (2019) Adaptive resolution for multiphase smoothed particle hydrodynamics. Comput Phys Commun 239:112–125MathSciNet
28.
Zurück zum Zitat Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain Lagrangian hydrodynamics a three-dimensional SPH code for dynamic material response. J Comput Phys 109:67–75 Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain Lagrangian hydrodynamics a three-dimensional SPH code for dynamic material response. J Comput Phys 109:67–75
29.
Zurück zum Zitat Zhang ZL, Liu MB (2017) Smoothed particle hydrodynamics with kernel gradient correction for modeling high velocity impact in two- and three-dimensional spaces. Eng Anal Bound Elem 83:141–157MathSciNet Zhang ZL, Liu MB (2017) Smoothed particle hydrodynamics with kernel gradient correction for modeling high velocity impact in two- and three-dimensional spaces. Eng Anal Bound Elem 83:141–157MathSciNet
30.
Zurück zum Zitat Bathe KJ (1996) Finite element procedures, 2nd edn. Prentice Hall, Berlin (KJ Bathe, Watertown, MA (2014) and Higher Education Press, China (2016)) Bathe KJ (1996) Finite element procedures, 2nd edn. Prentice Hall, Berlin (KJ Bathe, Watertown, MA (2014) and Higher Education Press, China (2016))
31.
Zurück zum Zitat Attaway SW, Heinstein MW, Swegle JW (1994) Coupling of smooth particle hydrodynamics with the finite element method. Nucl Eng Des 150:199–205 Attaway SW, Heinstein MW, Swegle JW (1994) Coupling of smooth particle hydrodynamics with the finite element method. Nucl Eng Des 150:199–205
32.
Zurück zum Zitat Johnson G (1994) Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations. Nucl Eng Des 150:265–274 Johnson G (1994) Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations. Nucl Eng Des 150:265–274
33.
Zurück zum Zitat De Vuyst T, Vignjevic R, Cambell JC (2005) Coupling between meshless and finite element methods. Int J Impact Eng 31:1054–1064 De Vuyst T, Vignjevic R, Cambell JC (2005) Coupling between meshless and finite element methods. Int J Impact Eng 31:1054–1064
34.
Zurück zum Zitat Groenenboom P, Cartwright B (2010) Hydrodynamics and fluid-structure interaction by coupled SPH-FE method. J Hydraul Res 48:61–73 Groenenboom P, Cartwright B (2010) Hydrodynamics and fluid-structure interaction by coupled SPH-FE method. J Hydraul Res 48:61–73
35.
Zurück zum Zitat Fourey G, Oger G, Le Touzé D, Alessandrini B (2020) Violent fluid-structure interaction simulations using a coupled SPH/FEM method. In: WCCM/APCOM 2010, p 10 Fourey G, Oger G, Le Touzé D, Alessandrini B (2020) Violent fluid-structure interaction simulations using a coupled SPH/FEM method. In: WCCM/APCOM 2010, p 10
36.
Zurück zum Zitat Fourey G, Hermange C, Le Touzé D, Oger G (2017) An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods. Comput Phys Commun 217:66–81MathSciNet Fourey G, Hermange C, Le Touzé D, Oger G (2017) An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods. Comput Phys Commun 217:66–81MathSciNet
37.
Zurück zum Zitat Long T, Hu D, Wan D, Zhuang C, Yang G (2017) An arbitrary boundary with ghost particles incorporated in coupled FEM–SPH model for FSI problems. J Comput Phys 350:166–183MathSciNet Long T, Hu D, Wan D, Zhuang C, Yang G (2017) An arbitrary boundary with ghost particles incorporated in coupled FEM–SPH model for FSI problems. J Comput Phys 350:166–183MathSciNet
38.
Zurück zum Zitat Fuchs SL, Meier C, Wall WA, Cyron CJ (2021) A novel smoothed particle hydrodynamics and finite element coupling scheme for fluid–structure interaction: The sliding boundary particle approach. Comput Methods Appl Mech Eng 383:113922MathSciNet Fuchs SL, Meier C, Wall WA, Cyron CJ (2021) A novel smoothed particle hydrodynamics and finite element coupling scheme for fluid–structure interaction: The sliding boundary particle approach. Comput Methods Appl Mech Eng 383:113922MathSciNet
39.
Zurück zum Zitat Yao X, Zhang X, Huang D (2022) An improved SPH-FEM coupling approach for modeling fluid–structure interaction problems. Comput Part Mech 10:1–18 Yao X, Zhang X, Huang D (2022) An improved SPH-FEM coupling approach for modeling fluid–structure interaction problems. Comput Part Mech 10:1–18
40.
Zurück zum Zitat Liu M, Shao J, Chang J (2012) On the treatment of solid boundary in smoothed particle hydrodynamics. Sci China Technol Sci 55:244–254 Liu M, Shao J, Chang J (2012) On the treatment of solid boundary in smoothed particle hydrodynamics. Sci China Technol Sci 55:244–254
41.
Zurück zum Zitat Park HJ, Seo HD, Lee PS (2021) Direct imposition of the wall boundary condition for simulating free surface flows in SPH. Struct Eng Mech 78:497–518 Park HJ, Seo HD, Lee PS (2021) Direct imposition of the wall boundary condition for simulating free surface flows in SPH. Struct Eng Mech 78:497–518
42.
Zurück zum Zitat X.Y., Hu N.A., Adams (2006) A multi-phase SPH method for macroscopic and mesoscopic flows Journal of Computational Physics 213(2) 844-861 10.1016/j.jcp.2005.09.001 X.Y., Hu N.A., Adams (2006) A multi-phase SPH method for macroscopic and mesoscopic flows Journal of Computational Physics 213(2) 844-861 10.1016/j.jcp.2005.09.001
43.
Zurück zum Zitat Marrone S, Colagrossi A, Antuono M, Colicchio G, Graziani G (2013) An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers. J Comput Phys 245:456–475MathSciNet Marrone S, Colagrossi A, Antuono M, Colicchio G, Graziani G (2013) An accurate SPH modeling of viscous flows around bodies at low and moderate Reynolds numbers. J Comput Phys 245:456–475MathSciNet
44.
Zurück zum Zitat Monaghan JJ, Kos A (2002) Solitary waves on a Cretan beach. J Waterw Port Coast Ocean Eng 125:145–155 Monaghan JJ, Kos A (2002) Solitary waves on a Cretan beach. J Waterw Port Coast Ocean Eng 125:145–155
45.
Zurück zum Zitat Wendland H (1998) Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J Approx Theory 93:258–272MathSciNet Wendland H (1998) Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J Approx Theory 93:258–272MathSciNet
46.
Zurück zum Zitat Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific
47.
Zurück zum Zitat Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference
48.
Zurück zum Zitat Sun PN, Le Touze D, Oger G, Zhang AM (2021) An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. Ocean Eng 221:108552 Sun PN, Le Touze D, Oger G, Zhang AM (2021) An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. Ocean Eng 221:108552
49.
Zurück zum Zitat Monaghan JJ (1989) On the problem of penetration in particle methods. J Comput Phys 82(1):1–15MathSciNet Monaghan JJ (1989) On the problem of penetration in particle methods. J Comput Phys 82(1):1–15MathSciNet
50.
Zurück zum Zitat Grenier N, Le Touzé D, Colagrossi A, Antuono M, Colicchio G (2013) Viscous bubbly flows simulation with an interface SPH model. Ocean Eng 69:88–102 Grenier N, Le Touzé D, Colagrossi A, Antuono M, Colicchio G (2013) Viscous bubbly flows simulation with an interface SPH model. Ocean Eng 69:88–102
51.
Zurück zum Zitat Shao S, Lo EY (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26(7):787–800 Shao S, Lo EY (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26(7):787–800
52.
Zurück zum Zitat Bierbrauer F, Bollada PC, Phillips TN (2009) A consistent reflected image particle approach to the treatment of boundary conditions in smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 198(41–44):3400–3410MathSciNet Bierbrauer F, Bollada PC, Phillips TN (2009) A consistent reflected image particle approach to the treatment of boundary conditions in smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 198(41–44):3400–3410MathSciNet
53.
Zurück zum Zitat Turek S, Hron J (2006) Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. Springer Turek S, Hron J (2006) Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. Springer
54.
Zurück zum Zitat Mayrhofer A, Laurence D, Rogers BD, Violeau D (2015) DNS and LES of 3-D wall-bounded turbulence using smoothed particle hydrodynamics. Comput Fluids 115:86–97MathSciNet Mayrhofer A, Laurence D, Rogers BD, Violeau D (2015) DNS and LES of 3-D wall-bounded turbulence using smoothed particle hydrodynamics. Comput Fluids 115:86–97MathSciNet
55.
Zurück zum Zitat Di Mascio A, Antuono M, Colagrossi A, Marrone S (2017) Smoothed particle hydrodynamics method from a large eddy simulation perspective. Phys Fluids 29(3):035102 Di Mascio A, Antuono M, Colagrossi A, Marrone S (2017) Smoothed particle hydrodynamics method from a large eddy simulation perspective. Phys Fluids 29(3):035102
56.
Zurück zum Zitat Walhorn E, Kölke A, Hübner B, Dinkler D (2005) Fluid–structure coupling within a monolithic model involving free surface flows. Comput Struct 83(25–26):2100–2111 Walhorn E, Kölke A, Hübner B, Dinkler D (2005) Fluid–structure coupling within a monolithic model involving free surface flows. Comput Struct 83(25–26):2100–2111
57.
Zurück zum Zitat Nunez-Ramirez J, Marongiu JC, Brun M, Combescure A (2017) A partitioned approach for the coupling of SPH and FE methods for transient nonlinear FSI problems with incompatible time-steps. Int J Numer Methods Eng 109:1391–1417MathSciNet Nunez-Ramirez J, Marongiu JC, Brun M, Combescure A (2017) A partitioned approach for the coupling of SPH and FE methods for transient nonlinear FSI problems with incompatible time-steps. Int J Numer Methods Eng 109:1391–1417MathSciNet
58.
Zurück zum Zitat Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197:1762–1776MathSciNet Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid–structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197:1762–1776MathSciNet
59.
Zurück zum Zitat Delorme L, Colagrossi A, Souto-Iglesias A, Zamora-Rodríguez R, Botia-Vera E (2009) A set of canonical problems in sloshing. Part I: pressure field in forced roll. Comparison between experimental results and SPH. Ocean Eng 36:168–178 Delorme L, Colagrossi A, Souto-Iglesias A, Zamora-Rodríguez R, Botia-Vera E (2009) A set of canonical problems in sloshing. Part I: pressure field in forced roll. Comparison between experimental results and SPH. Ocean Eng 36:168–178
60.
Zurück zum Zitat Paik KJ, Carrica PM (2014) Fluid–structure interaction for an elastic structure interacting with free surface in a rolling tank. Ocean Eng 84:201–212 Paik KJ, Carrica PM (2014) Fluid–structure interaction for an elastic structure interacting with free surface in a rolling tank. Ocean Eng 84:201–212
Metadaten
Titel
A new SPH-FEM coupling method for fluid–structure interaction using segment-based interface treatment
verfasst von
Hyung-Jun Park
Hyun-Duk Seo
Publikationsdatum
17.06.2023
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 2/2024
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-023-01856-1