Skip to main content

15.03.2025 | Original Paper

A new temperature prediction method for PMSM based on a nested depth neural network

verfasst von: Yuefeng Cen, Hao Guo, Xucheng Li, Gang Cen, Cheng Zhao, Yongping Cai

Erschienen in: Electrical Engineering

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Temperature monitoring of permanent magnet synchronous motors which is an important driving component of electric vehicles, is closely related to the performance of permanent magnet synchronous motors. A deep neural network-based temperature prediction method for permanent magnet synchronous motors is proposed in this study. The core component temperature features of permanent magnet synchronous motors obtained from the test bench are selected using maximal information coefficient (MIC) method, and then the core component temperature is predicted using a nested deep neural network composed of one-dimensional convolutional neural networks (1D-CNN) and gated recurrent unit (GRU) neural networks. The effectiveness of the proposed prediction method is verified by experimental comparison with long short-term memory (LSTM), GRU, CNN-GRU(CGRU), and other models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang H, Dou M, Deng J (2019) Loss-minimization strategy of nonsinusoidal back EMF PMSM in multiple synchronous reference frames. IEEE Trans Power Electron 35(8):8335–8346CrossRefMATH Zhang H, Dou M, Deng J (2019) Loss-minimization strategy of nonsinusoidal back EMF PMSM in multiple synchronous reference frames. IEEE Trans Power Electron 35(8):8335–8346CrossRefMATH
2.
Zurück zum Zitat Jafari M, Taher SA (2017) Thermal survey of core losses in permanent magnet micro-motor. Energy 123:579–584CrossRefMATH Jafari M, Taher SA (2017) Thermal survey of core losses in permanent magnet micro-motor. Energy 123:579–584CrossRefMATH
3.
Zurück zum Zitat Chen SA, Jiang XD, Yao M et al (2020) A dual vibration reduction structure-based self-powered active suspension system with PMSM-ball screw actuator via an improved H-2/H-infinity control. Energy 201:117590CrossRef Chen SA, Jiang XD, Yao M et al (2020) A dual vibration reduction structure-based self-powered active suspension system with PMSM-ball screw actuator via an improved H-2/H-infinity control. Energy 201:117590CrossRef
4.
Zurück zum Zitat Chen Hao et al (2021) Investigation of a 3D-magnetic flux PMSM with high torque density for electric vehicles. IEEE Trans Energy Convers 37:1442–1454CrossRefMATH Chen Hao et al (2021) Investigation of a 3D-magnetic flux PMSM with high torque density for electric vehicles. IEEE Trans Energy Convers 37:1442–1454CrossRefMATH
5.
Zurück zum Zitat Candelo-Zuluaga C, Riba JR, Espinosa AG et al (2022) Customized PMSM design and optimization methodology for water pumping applications. IEEE Trans Energy Convers 37(1):454–465CrossRefMATH Candelo-Zuluaga C, Riba JR, Espinosa AG et al (2022) Customized PMSM design and optimization methodology for water pumping applications. IEEE Trans Energy Convers 37(1):454–465CrossRefMATH
6.
Zurück zum Zitat Zhang Y, McLoone S, Cao W et al (2017) Power loss and thermal analysis of a MW high-speed PM synchronous machine. IEEE Trans Energy Convers 32(4):1468–1478CrossRefMATH Zhang Y, McLoone S, Cao W et al (2017) Power loss and thermal analysis of a MW high-speed PM synchronous machine. IEEE Trans Energy Convers 32(4):1468–1478CrossRefMATH
7.
Zurück zum Zitat Boglietti A, Cavagnino A, Staton D et al (2009) Evolution and modern approaches for thermal analysis of electrical machines. IEEE Trans Industr Electron 56(3):871–882CrossRefMATH Boglietti A, Cavagnino A, Staton D et al (2009) Evolution and modern approaches for thermal analysis of electrical machines. IEEE Trans Industr Electron 56(3):871–882CrossRefMATH
8.
Zurück zum Zitat Wilson SD, Stewart P, Taylor BP et al (2010) Methods of resistance estimation in PM synchronous motors for real-time thermal management. IEEE Trans Energy Convers 25(3):698–707CrossRefMATH Wilson SD, Stewart P, Taylor BP et al (2010) Methods of resistance estimation in PM synchronous motors for real-time thermal management. IEEE Trans Energy Convers 25(3):698–707CrossRefMATH
9.
Zurück zum Zitat Li Z, Feng G, Lai C et al (2021) Current injection-based simultaneous stator winding and PM temperature estimation for dual three-phase PMSMs. IEEE Trans Ind Appl 57(5):4933–4945CrossRefMATH Li Z, Feng G, Lai C et al (2021) Current injection-based simultaneous stator winding and PM temperature estimation for dual three-phase PMSMs. IEEE Trans Ind Appl 57(5):4933–4945CrossRefMATH
10.
Zurück zum Zitat Habibinia D, Rostami N, Feyzi MR et al (2019) A new finite element based method for thermal analysis of axial flux interior rotor permanent magnet synchronous machin. IET Electr Power Appl 14(3):464–470CrossRefMATH Habibinia D, Rostami N, Feyzi MR et al (2019) A new finite element based method for thermal analysis of axial flux interior rotor permanent magnet synchronous machin. IET Electr Power Appl 14(3):464–470CrossRefMATH
11.
Zurück zum Zitat Wallscheid O, Böcker J (2015) Global identification of a low-order lumpedparameter thermal network for permanent magnet synchronous motors. IEEE Trans Energy Convers 31(1):354–365CrossRefMATH Wallscheid O, Böcker J (2015) Global identification of a low-order lumpedparameter thermal network for permanent magnet synchronous motors. IEEE Trans Energy Convers 31(1):354–365CrossRefMATH
12.
Zurück zum Zitat Wang SN, Li YH, Li YZ et al (2016) Transient cooling effect analyses for a permanent-magnet synchronous motor with phase-change-material packaging. Appl Therm Eng 109:251–260CrossRefMATH Wang SN, Li YH, Li YZ et al (2016) Transient cooling effect analyses for a permanent-magnet synchronous motor with phase-change-material packaging. Appl Therm Eng 109:251–260CrossRefMATH
13.
Zurück zum Zitat Li J, Akilan T (2022) Global attention-based encoder-decoder LSTM model for temperature prediction of permanent magnet synchronous motors. arXiv preprint arXiv:2208.00293 Li J, Akilan T (2022) Global attention-based encoder-decoder LSTM model for temperature prediction of permanent magnet synchronous motors. arXiv preprint arXiv:​2208.​00293
14.
Zurück zum Zitat Wallscheid O, Kirchgässner W, Böcker J et al (2017) Investigation of long short-term memory networks to temperature prediction for permanent magnet synchronous motors. International joint conference on neural networks IEEE:1940–1947. Wallscheid O, Kirchgässner W, Böcker J et al (2017) Investigation of long short-term memory networks to temperature prediction for permanent magnet synchronous motors. International joint conference on neural networks IEEE:1940–1947.
15.
Zurück zum Zitat Kirchgässner W, Wallscheid O, Böcker J (2019) Empirical evaluation of exponentially weighted moving averages for simple linear thermal modeling of permanent magnet synchronous machines. IEEE 28th International Symposium on industrial electronics IEEE:318–323. Kirchgässner W, Wallscheid O, Böcker J (2019) Empirical evaluation of exponentially weighted moving averages for simple linear thermal modeling of permanent magnet synchronous machines. IEEE 28th International Symposium on industrial electronics IEEE:318–323.
16.
Zurück zum Zitat Guo H, Ding Q, Song Y et al (2020) Predicting temperature of permanent magnet synchronous motor based on deep neural network. Energies 13(18):4782CrossRefMATH Guo H, Ding Q, Song Y et al (2020) Predicting temperature of permanent magnet synchronous motor based on deep neural network. Energies 13(18):4782CrossRefMATH
17.
Zurück zum Zitat Cen G, Zhang CG, Cen YF et al (2021) (2021) A temperature prediction method of PMSM based on proximal optimization[J]. Automobile Technol 3:26–32MATH Cen G, Zhang CG, Cen YF et al (2021) (2021) A temperature prediction method of PMSM based on proximal optimization[J]. Automobile Technol 3:26–32MATH
18.
Zurück zum Zitat Chen G, Cai YP, Chen YF (2022) Temperature prediction model of permanent magnet synchronous motor based on deep learning. J Zhejiang Institute Sci Technol 34(03):216–224MATH Chen G, Cai YP, Chen YF (2022) Temperature prediction model of permanent magnet synchronous motor based on deep learning. J Zhejiang Institute Sci Technol 34(03):216–224MATH
19.
Zurück zum Zitat Latif A, Mehedi IM, Vellingiri MT et al (2023) Enhanced remora optimization with deep learning model for intelligent PMSM drives temperature prediction in electric vehicles. Axioms 12(9):852CrossRef Latif A, Mehedi IM, Vellingiri MT et al (2023) Enhanced remora optimization with deep learning model for intelligent PMSM drives temperature prediction in electric vehicles. Axioms 12(9):852CrossRef
20.
Zurück zum Zitat Guo F, Chen J, Wang Y et al (2024) A new LSTNet-based temperature prediction model for permanent magnet. Meas Sci Technol 35(6):066206CrossRef Guo F, Chen J, Wang Y et al (2024) A new LSTNet-based temperature prediction model for permanent magnet. Meas Sci Technol 35(6):066206CrossRef
21.
Zurück zum Zitat Reigosa D, Fernández D, Martínez M et al (2019) Magnet temperature estimation in PM synchronous machines using the high-frequency inductance. IEEE Trans Ind Appl 55(3):2750–2757CrossRefMATH Reigosa D, Fernández D, Martínez M et al (2019) Magnet temperature estimation in PM synchronous machines using the high-frequency inductance. IEEE Trans Ind Appl 55(3):2750–2757CrossRefMATH
22.
Zurück zum Zitat Zhou A, Du C, Peng Z et al (2020) Rotor temperature safety prediction method of PMSM for electric vehicle on real-time energy equivalence. Math Probl Eng 2020:1–10MATH Zhou A, Du C, Peng Z et al (2020) Rotor temperature safety prediction method of PMSM for electric vehicle on real-time energy equivalence. Math Probl Eng 2020:1–10MATH
23.
Zurück zum Zitat Domingos P (2012) A few useful things to know about machine learning. Commun ACM 55(10):78–87CrossRefMATH Domingos P (2012) A few useful things to know about machine learning. Commun ACM 55(10):78–87CrossRefMATH
25.
Zurück zum Zitat Molchanov P, Tyree S, Karras T et al (2016) Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440. Molchanov P, Tyree S, Karras T et al (2016) Pruning convolutional neural networks for resource efficient inference. arXiv preprint arXiv:​1611.​06440.
26.
Zurück zum Zitat Kirchgässner W, Wallscheid O, Böcker J (2020) Estimating electric motor temperatures with deep residual machine learning. IEEE Trans Power Electron 36(7):7480–7488CrossRefMATH Kirchgässner W, Wallscheid O, Böcker J (2020) Estimating electric motor temperatures with deep residual machine learning. IEEE Trans Power Electron 36(7):7480–7488CrossRefMATH
Metadaten
Titel
A new temperature prediction method for PMSM based on a nested depth neural network
verfasst von
Yuefeng Cen
Hao Guo
Xucheng Li
Gang Cen
Cheng Zhao
Yongping Cai
Publikationsdatum
15.03.2025
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-025-03040-8