Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

02.07.2018

A No-Reference Image Quality Measure for Blurred and Compressed Images Using Sparsity Features

Zeitschrift:
Cognitive Computation
Autoren:
Kanjar De, V. Masilamani

Abstract

Images can be distorted in the real world via many sources like faulty sensors, artifacts generated by compression algorithms, defocus, faulty lens, and poor lighting conditions. Our biological vision system can identify the quality of image by looking at the images, but developing an algorithm to assess the quality of an image is a very challenging task as an image can be corrupted by different types of distortions and statistical properties of different types of distortions are dissimilar. The main objective of this article is to propose an image quality assessment technique for images corrupted by blurring and compression-based artifacts. Machine learning-based approaches have been used in recent times to perform this task. Images can be analyzed in different transform domains like discrete cosine transform domain, wavelet domains, curvelet domains, and singular value decomposition. These domains generate sparse matrices. In this paper, we propose no-reference image quality assessment algorithms for images corrupted by blur and different compression algorithms using sparsity-based features computed from different domains and all features pooled by support vector regression. The proposed model has been tested on three standard image quality assessment datasets LIVE, CSIQ, and TID2013, and correlation with subjected human opinion scores has been presented along with comparative study with state-of-the-art quality measures. Experiments run on standard image quality databases show that the results obtained are outperforming the existing results.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

Neuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Product Lifecycle Management im Konzernumfeld – Herausforderungen, Lösungsansätze und Handlungsempfehlungen

Für produzierende Unternehmen hat sich Product Lifecycle Management in den letzten Jahrzehnten in wachsendem Maße zu einem strategisch wichtigen Ansatz entwickelt. Forciert durch steigende Effektivitäts- und Effizienzanforderungen stellen viele Unternehmen ihre Product Lifecycle Management-Prozesse und -Informationssysteme auf den Prüfstand. Der vorliegende Beitrag beschreibt entlang eines etablierten Analyseframeworks Herausforderungen und Lösungsansätze im Product Lifecycle Management im Konzernumfeld.
Jetzt gratis downloaden!

Bildnachweise