Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

18.05.2021

A Non-Time-Limited Channel Sounding Protocol for Key Generation

verfasst von: Liu Jingmei, Shen Zhiwei, Ren Zhuangzhuang, Liu Jingwei, Gong Fengkui

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The traditional channel sounding protocol requires that the whole sounding process must be completed within a coherent time. When the communication delay is close to or greater than the coherent time, the protocol will not work properly. In order to solve this problem, a novel Non-Time-Limited channel sounding protocol is proposed. The proposed channel sounding protocol does not need to guarantee the channel reciprocity, has no limit on the communication delay and has strong multi-relay scalability. At the same time, a relay-assisted security extension mechanism is proposed to prevent the collaborative eavesdropping of the neighboring attackers. Simulation experiments show that the Non-Time-Limited channel sounding protocol can get rid of the influence of channel change speed on key generation, effectively improve key consistency in high-speed mobile scenarios, and still maintain good key agreement rate performance in underwater acoustic communication.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rivest, R. L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communication of ACM, 21(2), 1–7.MathSciNetCrossRef Rivest, R. L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communication of ACM, 21(2), 1–7.MathSciNetCrossRef
2.
Zurück zum Zitat Wang, T., Liu, Y., & Vasilakos, A. V. (2015). Survey on channel reciprocity based key establishment techniques for wireless systems. Wireless Networks, 21(6), 1–12. Wang, T., Liu, Y., & Vasilakos, A. V. (2015). Survey on channel reciprocity based key establishment techniques for wireless systems. Wireless Networks, 21(6), 1–12.
3.
Zurück zum Zitat Liu, Y., Hsiao-Hwa, C., & Liangmin, W. (2017). Physical layer security for next generation wireless networks: Theories, technologies, and challenges. IEEE Communications Surveys & Tutorials, 19(1), 347–376.CrossRef Liu, Y., Hsiao-Hwa, C., & Liangmin, W. (2017). Physical layer security for next generation wireless networks: Theories, technologies, and challenges. IEEE Communications Surveys & Tutorials, 19(1), 347–376.CrossRef
4.
Zurück zum Zitat Maurer, U. M. (1993). Secret key agreement by public discussion from common information. IEEE Transactions on Information Theory, 39(3), 733–742.MathSciNetCrossRef Maurer, U. M. (1993). Secret key agreement by public discussion from common information. IEEE Transactions on Information Theory, 39(3), 733–742.MathSciNetCrossRef
5.
Zurück zum Zitat Liu, J., Hu, Q., Suny, R., Duz, X., & M. Guizani. (2020). A physical layer security scheme with compressed sensing in ofdm-based iot systems. In ICC 2020–2020 IEEE International Conference on Communications (ICC) (pp. 1–6). Liu, J., Hu, Q., Suny, R., Duz, X., & M. Guizani. (2020). A physical layer security scheme with compressed sensing in ofdm-based iot systems. In ICC 2020–2020 IEEE International Conference on Communications (ICC) (pp. 1–6).
6.
Zurück zum Zitat Han, Q., Liu, J., Shen, Z., Liu, J., & Gong, F. (2019). Vector partitioning quantization utilizing k-means clustering for physical layer secret key generation. Information Sciences, 512, 1171.MathSciNet Han, Q., Liu, J., Shen, Z., Liu, J., & Gong, F. (2019). Vector partitioning quantization utilizing k-means clustering for physical layer secret key generation. Information Sciences, 512, 1171.MathSciNet
7.
Zurück zum Zitat Moara-Nkwe, K., Shi, Q., Lee, G. M., & Eiza, M. H. (2019). A novel physical layer secure key generation and refreshment scheme for wireless sensor networks. IEEE Access, 6, 11374–11387.CrossRef Moara-Nkwe, K., Shi, Q., Lee, G. M., & Eiza, M. H. (2019). A novel physical layer secure key generation and refreshment scheme for wireless sensor networks. IEEE Access, 6, 11374–11387.CrossRef
8.
Zurück zum Zitat Hajomer, A. A. E., Zhang, L., Yang, X., & Hu, W. (2020). Post-processing protocol for physical-layer key generation and distribution in fiber networks. IEEE Photonics Technology Letters, 32(15), 901–904.CrossRef Hajomer, A. A. E., Zhang, L., Yang, X., & Hu, W. (2020). Post-processing protocol for physical-layer key generation and distribution in fiber networks. IEEE Photonics Technology Letters, 32(15), 901–904.CrossRef
9.
Zurück zum Zitat Xu, P., Hu, D., & Chen G. (2020). Physical-layer cooperative key generation with correlated eavesdropping channels in iot. In: IEEE International Conference on Internet of Things (iThings) (pp. 29–36). Xu, P., Hu, D., & Chen G. (2020). Physical-layer cooperative key generation with correlated eavesdropping channels in iot. In: IEEE International Conference on Internet of Things (iThings) (pp. 29–36).
10.
Zurück zum Zitat Shen, Z., Liu, J., & Han, Q. (2018). A local pilot auxiliary key generation scheme for secure underwater acoustic communication. Information Sciences, 473, 1–12.CrossRef Shen, Z., Liu, J., & Han, Q. (2018). A local pilot auxiliary key generation scheme for secure underwater acoustic communication. Information Sciences, 473, 1–12.CrossRef
11.
Zurück zum Zitat Zan, B., Gruteser, M., & Hu, F. (2012). Improving robustness of key extraction from wireless channels with differential techniques. In 2012 International Conference on Computing, Networking and Communications (ICNC) (pp. 980–984). Zan, B., Gruteser, M., & Hu, F. (2012). Improving robustness of key extraction from wireless channels with differential techniques. In 2012 International Conference on Computing, Networking and Communications (ICNC) (pp. 980–984).
12.
Zurück zum Zitat Hou, X., Gao, C., Zhu, Y., & Yang, S. (2016). Detection of active attacks based on random orthogonal pilots. In 2016 8th International Conference on Wireless Communications Signal Processing (WCSP) (pp. 1–4). Hou, X., Gao, C., Zhu, Y., & Yang, S. (2016). Detection of active attacks based on random orthogonal pilots. In 2016 8th International Conference on Wireless Communications Signal Processing (WCSP) (pp. 1–4).
13.
Zurück zum Zitat Qin, D., & Ding, Z. (2016). Exploiting multi-antenna non-reciprocal channels for shared secret key generation. IEEE Transactions on Information Forensics and Security, 11, 2693–2705.CrossRef Qin, D., & Ding, Z. (2016). Exploiting multi-antenna non-reciprocal channels for shared secret key generation. IEEE Transactions on Information Forensics and Security, 11, 2693–2705.CrossRef
14.
Zurück zum Zitat Ren, K., Su, H., & Wang, Q. (2011). Secret key generation exploiting channel characteristics in wireless communications. IEEE Wireless Communications, 18, 6–12.CrossRef Ren, K., Su, H., & Wang, Q. (2011). Secret key generation exploiting channel characteristics in wireless communications. IEEE Wireless Communications, 18, 6–12.CrossRef
15.
Zurück zum Zitat Kong, Y., Lyu, B., Chen, F., & Yang, Z. (2018). The security network coding system with physical layer key generation in two-way relay networks. IEEE Access, 6, 40673–40681.CrossRef Kong, Y., Lyu, B., Chen, F., & Yang, Z. (2018). The security network coding system with physical layer key generation in two-way relay networks. IEEE Access, 6, 40673–40681.CrossRef
16.
Zurück zum Zitat Xiao, S., Guo, Y., Huang, K., & Jin, L. (2017). High-rate secret key generation aided by multiple relays for internet of things. Electronics Letters, 53(17), 1198–1200.CrossRef Xiao, S., Guo, Y., Huang, K., & Jin, L. (2017). High-rate secret key generation aided by multiple relays for internet of things. Electronics Letters, 53(17), 1198–1200.CrossRef
17.
Zurück zum Zitat Zhang, S., Jin, L., Lou, Y., & Zhong, Z. (2018). Secret key generation based on two-way randomness for tdd-siso system. China Communications, 15(7), 202–216.CrossRef Zhang, S., Jin, L., Lou, Y., & Zhong, Z. (2018). Secret key generation based on two-way randomness for tdd-siso system. China Communications, 15(7), 202–216.CrossRef
18.
Zurück zum Zitat Zhuang, Z., Jiang, S., Xu, Y., Luo, X., & Cheng, X. (2019). A physical layer key generation scheme based on full-duplex mode in wireless networks without fixed infrastructure. In: 2019 International Conference on Computer, Information and Telecommunication Systems (CITS) (pp. 1–5). Zhuang, Z., Jiang, S., Xu, Y., Luo, X., & Cheng, X. (2019). A physical layer key generation scheme based on full-duplex mode in wireless networks without fixed infrastructure. In: 2019 International Conference on Computer, Information and Telecommunication Systems (CITS) (pp. 1–5).
19.
Zurück zum Zitat Han, J., Zeng, X., Xue, X., & Ma, J. (2020). Physical layer secret key generation based on autoencoder for weakly correlated channels. In 2020 IEEE/CIC International Conference on Communications in China (ICCC) (pp. 1220–1225). Han, J., Zeng, X., Xue, X., & Ma, J. (2020). Physical layer secret key generation based on autoencoder for weakly correlated channels. In 2020 IEEE/CIC International Conference on Communications in China (ICCC) (pp. 1220–1225).
20.
Zurück zum Zitat Bakşi, S., & Popescu, D. C. (2019). Secret key generation with precoding and role reversal in mimo wireless systems. IEEE Transactions on Wireless Communications, 18(6), 3104–3112.CrossRef Bakşi, S., & Popescu, D. C. (2019). Secret key generation with precoding and role reversal in mimo wireless systems. IEEE Transactions on Wireless Communications, 18(6), 3104–3112.CrossRef
21.
Zurück zum Zitat Li, G., Hu, A., Peng, L., & Sun, C. (2016). The optimal preprocessing approach for secret key generation from ofdm channel measurements. In 2016 IEEE Globecom Workshops (GC Wkshps) (pp. 1–6). Li, G., Hu, A., Peng, L., & Sun, C. (2016). The optimal preprocessing approach for secret key generation from ofdm channel measurements. In 2016 IEEE Globecom Workshops (GC Wkshps) (pp. 1–6).
Metadaten
Titel
A Non-Time-Limited Channel Sounding Protocol for Key Generation
verfasst von
Liu Jingmei
Shen Zhiwei
Ren Zhuangzhuang
Liu Jingwei
Gong Fengkui
Publikationsdatum
18.05.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08490-4

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt