Skip to main content

2024 | OriginalPaper | Buchkapitel

A Note on Compact Embeddings of Reproducing Kernel Hilbert Spaces in \(L^2\) and Infinite-Variate Function Approximation

verfasst von : Marcin Wnuk

Erschienen in: Monte Carlo and Quasi-Monte Carlo Methods

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This note consists of two largely independent parts. In the first part we give conditions on the kernel \(k: \Omega \times \Omega \rightarrow \mathbb {R}\) of a reproducing kernel Hilbert space H continuously embedded via the identity mapping into \(L^2(\Omega , \mu ),\) which are equivalent to the fact that H is even compactly embedded into \(L^2(\Omega , \mu ).\) In the second part we consider a scenario from infinite-variate \(L^2\)-approximation. Suppose that the embedding of a reproducing kernel Hilbert space of univariate functions with reproducing kernel \(1+k\) into \(L^2(\Omega , \mu )\) is compact. We provide a simple criterion for checking compactness of the embedding of a reproducing kernel Hilbert space with the kernel given by
$$\begin{aligned} \sum _{u \in \mathcal {U}} \gamma _u \bigotimes _{j \in u}k, \end{aligned}$$
where \(\mathcal {U} = \{u \subset \mathbb {N}: |u| < \infty \},\) and \(\gamma = (\gamma _u)_{u \in \mathcal {U}}\) is a family of non-negative numbers, into an appropriate \(L^2\) space.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The mapping S, strictly speaking, needs not to be an embedding due to the potential lack of injectivity. It may happen that two different elements \(f,g \in H\) will be mapped into the same equivalence class \([f] \in L^2.\) Results obtained in this paper hold also in this case. However, to keep the nomenclature simple, we will refer to S as to the (identical) embedding.
 
2
A simple calculation shows that for any orthonormal basis \((e_j)_{j \in \mathbb {N}}\) of \(L^2(\Omega )\) one has \(\sum _{j = 1}^{\infty }\Vert T_{L^2,L^2}e_j \Vert _{L^2}^2 = \Vert k \Vert _{L^2(\Omega \times \Omega )}^2\), so \(T_{L^2,L^2}\) is even a Hilbert-Schmidt operator, see e.g. Theorem 4.27. from [1].
 
3
Note that \(\frac{\mu _i}{\nu _i}, i \in \mathbb {N},\) are eigenvalues of \(S^*S\) corresponding to eigenvectors forming an orthonormal basis of \(\ell ^2(\nu ),\) and thus by the spectral theorem \(S^*S\) is compact if and only if \(\lim _{i \rightarrow \infty }\frac{\mu _i}{\nu _i} = 0.\) As compactness of S is equivalent to compactness of \(S^*S\) the statement follows.
 
4
Continouity of \(S_{\gamma }\) is equivalent to \(H_{\gamma } \subset L^2(\mathcal {X}, \mu ^{\mathbb {N}}),\) so \(S_{\gamma }\) is continuous always when it is well-defined.
 
5
Note that \(\bigcup _n H_n\) is dense in \(H_{\gamma }.\)
 
Literatur
1.
Zurück zum Zitat Christmann, A., Steinwart, I.: Support Vector Machines. Springer, Berlin (2008) Christmann, A., Steinwart, I.: Support Vector Machines. Springer, Berlin (2008)
2.
Zurück zum Zitat Gnewuch, M., Hefter, M., Hinrichs, A., Ritter, K.: Embeddings of weighted Hilbert spaces and applications to multivariate and infinite-dimensional integration. J. Approx. Theory 222, 8–39 (2017)MathSciNetCrossRef Gnewuch, M., Hefter, M., Hinrichs, A., Ritter, K.: Embeddings of weighted Hilbert spaces and applications to multivariate and infinite-dimensional integration. J. Approx. Theory 222, 8–39 (2017)MathSciNetCrossRef
3.
Zurück zum Zitat Gnewuch, M., Hefter, M., Hinrichs, A., Ritter, K., Wasilkowski, G.W.: Embeddings for infinite-dimensional integration and \({L}_2\)-approximation with increasing smoothness. J. Complex. 54, 101406 (2019)CrossRef Gnewuch, M., Hefter, M., Hinrichs, A., Ritter, K., Wasilkowski, G.W.: Embeddings for infinite-dimensional integration and \({L}_2\)-approximation with increasing smoothness. J. Complex. 54, 101406 (2019)CrossRef
4.
Zurück zum Zitat Gnewuch, M., Mayer, S., Ritter, K.: On weighted Hilbert spaces and integration of functions of infinitely many variables. J. Complex. 30, 29–47 (2014)MathSciNetCrossRef Gnewuch, M., Mayer, S., Ritter, K.: On weighted Hilbert spaces and integration of functions of infinitely many variables. J. Complex. 30, 29–47 (2014)MathSciNetCrossRef
5.
Zurück zum Zitat Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Vol. 3: Standard Information for Operators. EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2012) Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Vol. 3: Standard Information for Operators. EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich (2012)
6.
Zurück zum Zitat Wasilkowski, G.W.: Liberating the dimension for function approximation and integration. In: Monte Carlo and Quasi-Monte Carlo Methods, pp. 211–231 (2012) Wasilkowski, G.W.: Liberating the dimension for function approximation and integration. In: Monte Carlo and Quasi-Monte Carlo Methods, pp. 211–231 (2012)
7.
Zurück zum Zitat Wasilkowski, G.W.: Liberating the dimension for \({L}_2\)-approximation. J. Complex. 28, 304–319 (2012)CrossRef Wasilkowski, G.W.: Liberating the dimension for \({L}_2\)-approximation. J. Complex. 28, 304–319 (2012)CrossRef
Metadaten
Titel
A Note on Compact Embeddings of Reproducing Kernel Hilbert Spaces in and Infinite-Variate Function Approximation
verfasst von
Marcin Wnuk
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_33