Skip to main content
Erschienen in:

01.08.2022

A Novel Adaptive Traffic Signal Control Based on Cloud/Fog/Edge Computing

verfasst von: Seyit Alperen Celtek, Akif Durdu

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes the Internet of Things-based real-time adaptive traffic signal control strategy. The proposed model consists of three-layer; edge computing layer, fog computing layer, and cloud computing layer. The edge computing layer provides real-time and local optimization. The middle layer, which is the fog computing layer, performs a real-time and global optimization process. The cloud computing layer, which is the top layer, acts as a control center and optimizes the parameters of the fog layer and the edge layer. The proposed strategy uses the Deep Q-Learning algorithm for the optimization process in all three layers. This study employs the SUMO traffic simulator for performance evaluation. These results are compared with the results of adaptive traffic control methods. The output of this study shows that the proposed model can reduce waiting times and travel times while increasing travel speed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Ge, H., Song, Y., Wu, C., Ren, J., Tan, G.: Cooperative deep Q-learning with Q-value transfer for multi-intersection signal control,. IEEE Access. 7, 40797–40809 (2019)CrossRef Ge, H., Song, Y., Wu, C., Ren, J., Tan, G.: Cooperative deep Q-learning with Q-value transfer for multi-intersection signal control,. IEEE Access. 7, 40797–40809 (2019)CrossRef
2.
Zurück zum Zitat Spall, J.C., Chin, D.C.: Traffic-responsive signal timing for system-wide traffic control,. Transp. Res. Part C: Emerg. Technol. 5, 3–4 (1997)CrossRef Spall, J.C., Chin, D.C.: Traffic-responsive signal timing for system-wide traffic control,. Transp. Res. Part C: Emerg. Technol. 5, 3–4 (1997)CrossRef
3.
Zurück zum Zitat McCrea, J., Moutari, S.: “A hybrid macroscopic-based model for traffic flow in road networks,“. Eur. J. Oper. Res. 207(2), 676–684 (2010)CrossRefMATHMathSciNet McCrea, J., Moutari, S.: “A hybrid macroscopic-based model for traffic flow in road networks,“. Eur. J. Oper. Res. 207(2), 676–684 (2010)CrossRefMATHMathSciNet
4.
Zurück zum Zitat Sun, C., Luo, Y., Li, J.: Urban traffic infrastructure investment and air pollution: Evidence from the 83 cities in China,. J. Clean. Prod. 172, 488–496 (2018)CrossRef Sun, C., Luo, Y., Li, J.: Urban traffic infrastructure investment and air pollution: Evidence from the 83 cities in China,. J. Clean. Prod. 172, 488–496 (2018)CrossRef
5.
Zurück zum Zitat Levy, J.I., Buonocore, J.J., Von Stackelberg, K.: Evaluation of the public health impacts of traffic congestion: a health risk assessment. Environ. Health. 9(1), 1–12 (2010)CrossRef Levy, J.I., Buonocore, J.J., Von Stackelberg, K.: Evaluation of the public health impacts of traffic congestion: a health risk assessment. Environ. Health. 9(1), 1–12 (2010)CrossRef
6.
Zurück zum Zitat Roess, R.P., Prassas, E.S., McShane, W.R.: Traffic engineering. Pearson/Prentice Hall (2004) Roess, R.P., Prassas, E.S., McShane, W.R.: Traffic engineering. Pearson/Prentice Hall (2004)
7.
Zurück zum Zitat Garcia-Nieto, J., Olivera, A.C., Alba, E.: Optimal cycle program of traffic lights with particle swarm optimization,. IEEE Trans. Evol. Comput. 17(6), 823–839 (2013)CrossRef Garcia-Nieto, J., Olivera, A.C., Alba, E.: Optimal cycle program of traffic lights with particle swarm optimization,. IEEE Trans. Evol. Comput. 17(6), 823–839 (2013)CrossRef
8.
Zurück zum Zitat Zhou, P., Fang, Z., Dong, H., Liu, J., Pan, S.: “Data analysis with multi-objective optimization algorithm: A study in smart traffic signal system,“ in IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), 2017: IEEE, pp. 307–310. (2017) Zhou, P., Fang, Z., Dong, H., Liu, J., Pan, S.: “Data analysis with multi-objective optimization algorithm: A study in smart traffic signal system,“ in IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), 2017: IEEE, pp. 307–310. (2017)
9.
Zurück zum Zitat Ali, M.E.M., Durdu, A., Celtek, S.A., Yilmaz, A.: “An Adaptive Method for Traffic Signal Control Based on Fuzzy Logic With Webster and Modified Webster Formula Using SUMO Traffic Simulator,“. IEEE Access. 9, 102985–102997 (2021)CrossRef Ali, M.E.M., Durdu, A., Celtek, S.A., Yilmaz, A.: “An Adaptive Method for Traffic Signal Control Based on Fuzzy Logic With Webster and Modified Webster Formula Using SUMO Traffic Simulator,“. IEEE Access. 9, 102985–102997 (2021)CrossRef
10.
Zurück zum Zitat Yau, K.-L.A., Qadir, J., Khoo, H.L., Ling, M.H., Komisarczuk, P.: A survey on reinforcement learning models and algorithms for traffic signal control,. ACM Comput. Surv. (CSUR). 50(3), 1–38 (2017)CrossRef Yau, K.-L.A., Qadir, J., Khoo, H.L., Ling, M.H., Komisarczuk, P.: A survey on reinforcement learning models and algorithms for traffic signal control,. ACM Comput. Surv. (CSUR). 50(3), 1–38 (2017)CrossRef
11.
Zurück zum Zitat Ali, M.E.M., Durdu, A., Çeltek, S.A., Gültekin, S.S.:“Fuzzy logic and webster’s optimal cycle based decentralized coordinated adaptive traffic control method,“ (2020) Ali, M.E.M., Durdu, A., Çeltek, S.A., Gültekin, S.S.:“Fuzzy logic and webster’s optimal cycle based decentralized coordinated adaptive traffic control method,“ (2020)
12.
Zurück zum Zitat Wei, H., Zheng, G., Gayah, V., Li, Z.: “A survey on traffic signal control methods,“ arXiv preprint arXiv:08117, 2019. (1904) Wei, H., Zheng, G., Gayah, V., Li, Z.: “A survey on traffic signal control methods,“ arXiv preprint arXiv:08117, 2019. (1904)
13.
Zurück zum Zitat Celtek, S.A., Durdu, A., Ali, M.E.M.: “Evaluating Action Durations for Adaptive Traffic Signal Control Based On Deep Q-Learning,“International Journal of Intelligent Transportation Systems Research, (2021). /06/29 2021. Celtek, S.A., Durdu, A., Ali, M.E.M.: “Evaluating Action Durations for Adaptive Traffic Signal Control Based On Deep Q-Learning,“International Journal of Intelligent Transportation Systems Research, (2021). /06/29 2021.
14.
Zurück zum Zitat Celtek, S.A., Durdu, A., Ali, M.E.M.: “Real-time Traffic Signal Control with Swarm Optimization Methods,“ Measurement, July 2020 2020 Celtek, S.A., Durdu, A., Ali, M.E.M.: “Real-time Traffic Signal Control with Swarm Optimization Methods,“ Measurement, July 2020 2020
15.
Zurück zum Zitat Araghi, S., Khosravi, A., Creighton, D.: A review on computational intelligence methods for controlling traffic signal timing,. Expert Syst. Appl. 42(3), 1538–1550 (2015)CrossRef Araghi, S., Khosravi, A., Creighton, D.: A review on computational intelligence methods for controlling traffic signal timing,. Expert Syst. Appl. 42(3), 1538–1550 (2015)CrossRef
16.
Zurück zum Zitat Webster, F.: “Traffic signal settings, road research technical paper no. 39,“Road Research Laboratory, (1958) Webster, F.: “Traffic signal settings, road research technical paper no. 39,“Road Research Laboratory, (1958)
17.
Zurück zum Zitat Gartner, N.H., Stamatiadis, C.: Arterial-based control of traffic flow in urban grid networks,. Math. Comput. Model. 35, 5–6 (2002)CrossRefMATHMathSciNet Gartner, N.H., Stamatiadis, C.: Arterial-based control of traffic flow in urban grid networks,. Math. Comput. Model. 35, 5–6 (2002)CrossRefMATHMathSciNet
18.
Zurück zum Zitat Mannion, P., Duggan, J., Howley, E.: An experimental review of reinforcement learning algorithms for adaptive traffic signal control,“. In: Autonomic road transport support systems, pp. 47–66. Springer (2016) Mannion, P., Duggan, J., Howley, E.: An experimental review of reinforcement learning algorithms for adaptive traffic signal control,“. In: Autonomic road transport support systems, pp. 47–66. Springer (2016)
19.
Zurück zum Zitat Boukerche, A., Zhong, D., Sun, P.: “A Novel Reinforcement Learning-based Cooperative Traffic Signal System through Max-pressure Control,“IEEE Transactions on Vehicular Technology, (2021) Boukerche, A., Zhong, D., Sun, P.: “A Novel Reinforcement Learning-based Cooperative Traffic Signal System through Max-pressure Control,“IEEE Transactions on Vehicular Technology, (2021)
20.
Zurück zum Zitat Shaikh, P.W., El-Abd, M., Khanafer, M., Gao, K.: “A Review on Swarm Intelligence and Evolutionary Algorithms for Solving the Traffic Signal Control Problem,“IEEE Transactions on Intelligent Transportation Systems, (2020) Shaikh, P.W., El-Abd, M., Khanafer, M., Gao, K.: “A Review on Swarm Intelligence and Evolutionary Algorithms for Solving the Traffic Signal Control Problem,“IEEE Transactions on Intelligent Transportation Systems, (2020)
21.
Zurück zum Zitat Celtek, S.A., Durdu, A.: “An Operant Conditioning Approach For Larga Scale Social Optimization Algorithms,“. Konya Mühendislik Bilimleri Dergisi. 8, 38–45 (2020) Celtek, S.A., Durdu, A.: “An Operant Conditioning Approach For Larga Scale Social Optimization Algorithms,“. Konya Mühendislik Bilimleri Dergisi. 8, 38–45 (2020)
22.
Zurück zum Zitat Abdoos, M.: “Fuzzy Graph and Collective Multi-Agent Reinforcement Learning for Traffic Signals Control,“IEEE Intelligent Systems, (2020) Abdoos, M.: “Fuzzy Graph and Collective Multi-Agent Reinforcement Learning for Traffic Signals Control,“IEEE Intelligent Systems, (2020)
23.
Zurück zum Zitat Liang, X., Du, X., Wang, G., Han, Z.: “A deep reinforcement learning network for traffic light cycle control,“. IEEE Trans. Veh. Technol. 68(2), 1243–1253 (2019)CrossRef Liang, X., Du, X., Wang, G., Han, Z.: “A deep reinforcement learning network for traffic light cycle control,“. IEEE Trans. Veh. Technol. 68(2), 1243–1253 (2019)CrossRef
24.
Zurück zum Zitat Tan, T., Bao, F., Deng, Y., Jin, A., Dai, Q., Wang, J.: Cooperative deep reinforcement learning for large-scale traffic grid signal control,. IEEE Trans. cybernetics. 50(6), 2687–2700 (2019)CrossRef Tan, T., Bao, F., Deng, Y., Jin, A., Dai, Q., Wang, J.: Cooperative deep reinforcement learning for large-scale traffic grid signal control,. IEEE Trans. cybernetics. 50(6), 2687–2700 (2019)CrossRef
25.
Zurück zum Zitat Zhang, C., Jin, S., Xue, W., Xie, X., Chen, S., Chen, R.: “Independent Reinforcement Learning for Weakly Cooperative Multiagent Traffic Control Problem,“IEEE Transactions on Vehicular Technology, (2021) Zhang, C., Jin, S., Xue, W., Xie, X., Chen, S., Chen, R.: “Independent Reinforcement Learning for Weakly Cooperative Multiagent Traffic Control Problem,“IEEE Transactions on Vehicular Technology, (2021)
26.
Zurück zum Zitat Boukerche, A., Zhong, D., Sun, P.: “FECO: An Efficient Deep Reinforcement Learning-based Fuel-Economic Traffic Signal Control Scheme,“IEEE Transactions on Sustainable Computing, (2021) Boukerche, A., Zhong, D., Sun, P.: “FECO: An Efficient Deep Reinforcement Learning-based Fuel-Economic Traffic Signal Control Scheme,“IEEE Transactions on Sustainable Computing, (2021)
27.
Zurück zum Zitat Joo, H., Ahmed, S.H., Lim, Y.: “Traffic signal control for smart cities using reinforcement learning,“Computer Communications, (2020) Joo, H., Ahmed, S.H., Lim, Y.: “Traffic signal control for smart cities using reinforcement learning,“Computer Communications, (2020)
28.
Zurück zum Zitat Kaffash, S., Nguyen, A.T., Zhu, J.: Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis,. Int. J. Prod. Econ. 231, 107868 (2021)CrossRef Kaffash, S., Nguyen, A.T., Zhu, J.: Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis,. Int. J. Prod. Econ. 231, 107868 (2021)CrossRef
29.
Zurück zum Zitat Wang, X., Ke, L., Qiao, Z., Chai, X.: “Large-scale traffic signal control using a novel multiagent reinforcement learning,“IEEE transactions on cybernetics, (2020) Wang, X., Ke, L., Qiao, Z., Chai, X.: “Large-scale traffic signal control using a novel multiagent reinforcement learning,“IEEE transactions on cybernetics, (2020)
30.
Zurück zum Zitat Balaji, P., Srinivasan, D.: Multi-agent system in urban traffic signal control,. IEEE Comput. Intell. Mag. 5(4), 43–51 (2010) Balaji, P., Srinivasan, D.: Multi-agent system in urban traffic signal control,. IEEE Comput. Intell. Mag. 5(4), 43–51 (2010)
31.
Zurück zum Zitat Zhang, Y., Zhou, Y.: Distributed coordination control of traffic network flow using adaptive genetic algorithm based on cloud computing,. J. Netw. Comput. Appl. 119, 110–120 (2018)CrossRef Zhang, Y., Zhou, Y.: Distributed coordination control of traffic network flow using adaptive genetic algorithm based on cloud computing,. J. Netw. Comput. Appl. 119, 110–120 (2018)CrossRef
32.
Zurück zum Zitat Vergis, S., Komianos, V., Tsoumanis, G., Tsipis, A., Oikonomou, K.: “A Low-Cost Vehicular Traffic Monitoring System Using Fog Computing,“. Smart Cities. 3(1), 138–156 (2020)CrossRef Vergis, S., Komianos, V., Tsoumanis, G., Tsipis, A., Oikonomou, K.: “A Low-Cost Vehicular Traffic Monitoring System Using Fog Computing,“. Smart Cities. 3(1), 138–156 (2020)CrossRef
33.
Zurück zum Zitat Dass, P., Misra, S., Roy, C.: “T-safe: Trustworthy service provisioning for IoT-based intelligent transport systems,“. IEEE Trans. Veh. Technol. 69(9), 9509–9517 (2020)CrossRef Dass, P., Misra, S., Roy, C.: “T-safe: Trustworthy service provisioning for IoT-based intelligent transport systems,“. IEEE Trans. Veh. Technol. 69(9), 9509–9517 (2020)CrossRef
34.
Zurück zum Zitat Tang, C., Xia, S., Zhu, C., Wei, X.: Phase timing optimization for smart traffic control based on fog computing. IEEE Access. 7, 84217–84228 (2019)CrossRef Tang, C., Xia, S., Zhu, C., Wei, X.: Phase timing optimization for smart traffic control based on fog computing. IEEE Access. 7, 84217–84228 (2019)CrossRef
35.
Zurück zum Zitat Perera, C., Qin, Y., Estrella, J.C., Reiff-Marganiec, S., Vasilakos, A.V.: Fog computing for sustainable smart cities: A survey,. ACM Comput. Surv. (CSUR). 50(3), 1–43 (2017)CrossRef Perera, C., Qin, Y., Estrella, J.C., Reiff-Marganiec, S., Vasilakos, A.V.: Fog computing for sustainable smart cities: A survey,. ACM Comput. Surv. (CSUR). 50(3), 1–43 (2017)CrossRef
36.
Zurück zum Zitat Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: “Fog computing and its role in the internet of things,“ in Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pp. 13–16. (2012) Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: “Fog computing and its role in the internet of things,“ in Proceedings of the first edition of the MCC workshop on Mobile cloud computing, pp. 13–16. (2012)
37.
Zurück zum Zitat Jovanović, A., Nikolić, M., Teodorović, D.: Area-wide urban traffic control: A Bee Colony Optimization approach,. Transp. Res. Part C: Emerg. Technol. 77, 329–350 (2017)CrossRef Jovanović, A., Nikolić, M., Teodorović, D.: Area-wide urban traffic control: A Bee Colony Optimization approach,. Transp. Res. Part C: Emerg. Technol. 77, 329–350 (2017)CrossRef
38.
Zurück zum Zitat Orcutt, F.L. Jr.: The traffic signal book. (1993) Orcutt, F.L. Jr.: The traffic signal book. (1993)
39.
Zurück zum Zitat Papacostas, C.S., Prevedouros, P.D.: Transportation engineering and planning. (1993) Papacostas, C.S., Prevedouros, P.D.: Transportation engineering and planning. (1993)
Metadaten
Titel
A Novel Adaptive Traffic Signal Control Based on Cloud/Fog/Edge Computing
verfasst von
Seyit Alperen Celtek
Akif Durdu
Publikationsdatum
01.08.2022
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 3/2022
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-022-00315-3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.