2018 | OriginalPaper | Buchkapitel
Tipp
Weitere Kapitel dieses Buchs durch Wischen aufrufen
Erschienen in:
Transactions on Edutainment XIV
Based on the study of image gradient orientation and relevant technique about customers, this paper has proposed a algorithm related with customers based on image gradient orientation (CS-IGO-LDA). Face images are vulnerable to illumination changes, resulting in most of the traditional subspace learning algorithms which rely on image representation information are robust. In order to alleviate this problem, we represent the original samples by using image gradient orientation rather than the pixel intensity. And, in order to better describe the differences between different categories, we use methods related with customers to extract sample feature vector of each individual. The proposed CS-IGO-LDA method has made full use of the advantage of image gradient orientation and methods related with customers in face recognition. Experiments in face databases of Yale, JAFFE and XM2VTS have proved the validity of the new algorithm in face recognition and face verification.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:
Anzeige
1.
Zurück zum Zitat Tzimiropoulos, G., Zafeiriou, S.: PAntic., M.: Subspace learning from image gradient orientations. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 2454–2466 (2012) CrossRef Tzimiropoulos, G., Zafeiriou, S.: PAntic., M.: Subspace learning from image gradient orientations. IEEE Trans. Pattern Anal. Mach. Intell.
34(2), 2454–2466 (2012)
CrossRef
2.
Zurück zum Zitat Kittler, J.: Face authentication using client specific fisherfaces. In: Proceedings of Center for Vision Speech and Signal Processing. University of Surrey (2001) Kittler, J.: Face authentication using client specific fisherfaces. In: Proceedings of Center for Vision Speech and Signal Processing. University of Surrey (2001)
3.
Zurück zum Zitat Wu, X., Josef, K., Yang, J., Kieron, M., Wang, S., Lu, J.: On dimensionality reduction for client specific discriminant analysis with application to face verification. In: Li, S.Z., Lai, J., Tan, T., Feng, G., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 305–312. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30548-4_35 CrossRef Wu, X., Josef, K., Yang, J., Kieron, M., Wang, S., Lu, J.: On dimensionality reduction for client specific discriminant analysis with application to face verification. In: Li, S.Z., Lai, J., Tan, T., Feng, G., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 305–312. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30548-4_35
CrossRef
4.
Zurück zum Zitat Su, X.: Face Recognition Algorithms and its Application. Chinese Thesis, Jiangnan University, Wuxi, China (2013) Su, X.: Face Recognition Algorithms and its Application. Chinese Thesis, Jiangnan University, Wuxi, China (2013)
5.
Zurück zum Zitat Yin, H.-F., Wu, X.-J., Sun, X.-Q.: Client specific image gradient orientation for unimodal and multimodal face representation. In: Schwenker, F., Scherer, S., Morency, L.-P. (eds.) MPRSS 2014. LNCS (LNAI), vol. 8869, pp. 15–25. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14899-1_2 Yin, H.-F., Wu, X.-J., Sun, X.-Q.: Client specific image gradient orientation for unimodal and multimodal face representation. In: Schwenker, F., Scherer, S., Morency, L.-P. (eds.) MPRSS 2014. LNCS (LNAI), vol. 8869, pp. 15–25. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-14899-1_2
6.
Zurück zum Zitat Sun, X.Q., Wu, X.J., Sun, J., Montesinos, P.: Hybrid client specific discriminant analysis and its application to face verification. In: Hatzilygeroudis, I., Palade, V. (eds.) Combinations of Intelligent Methods and Applications. Smart Innovation, Systems and Technologies, vol. 23. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36651-2_8 Sun, X.Q., Wu, X.J., Sun, J., Montesinos, P.: Hybrid client specific discriminant analysis and its application to face verification. In: Hatzilygeroudis, I., Palade, V. (eds.) Combinations of Intelligent Methods and Applications. Smart Innovation, Systems and Technologies, vol. 23. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36651-2_8
7.
Zurück zum Zitat Jian, C., Chen, X.: Unsupervised feature Selection based on locality preserving projection and sparse representation. Pattern Recogn. Artif. Intell. 28(3), 247–252 (2015) Jian, C., Chen, X.: Unsupervised feature Selection based on locality preserving projection and sparse representation. Pattern Recogn. Artif. Intell.
28(3), 247–252 (2015)
8.
Zurück zum Zitat Yao, L., Deng, K., Xu, Y.: Face recognition based on gradient information. Comput. Eng. Appl. 46(35), 170–172 (2010) Yao, L., Deng, K., Xu, Y.: Face recognition based on gradient information. Comput. Eng. Appl.
46(35), 170–172 (2010)
9.
Zurück zum Zitat Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Principal component analysis of image gradient orientations for face recognition. In: Proceedings of International Conference on Automatic Face & Gesture Recognition and Workshops, pp. 553–558 (2011) Tzimiropoulos, G., Zafeiriou, S., Pantic, M.: Principal component analysis of image gradient orientations for face recognition. In: Proceedings of International Conference on Automatic Face & Gesture Recognition and Workshops, pp. 553–558 (2011)
10.
Zurück zum Zitat Chen, X., Yang, J., Zhang, D., Liang, J.: Complete large margin linear discriminant analysis using mathematical programming approach. Pattern Recogn. 46(6), 1579–1594 (2013) CrossRefMATH Chen, X., Yang, J., Zhang, D., Liang, J.: Complete large margin linear discriminant analysis using mathematical programming approach. Pattern Recogn.
46(6), 1579–1594 (2013)
CrossRefMATH
11.
Zurück zum Zitat Yao, C., Lu, Z., Li, J., Xu, Y., Han, J.: A subset method for improving linear discriminant analysis. Neurocomputing 138, 310–315 (2014) CrossRef Yao, C., Lu, Z., Li, J., Xu, Y., Han, J.: A subset method for improving linear discriminant analysis. Neurocomputing
138, 310–315 (2014)
CrossRef
- Titel
- A Novel Algorithm Related with Customers Based on Image Gradient Orientation
- DOI
- https://doi.org/10.1007/978-3-662-56689-3_6
- Autoren:
-
Xiaofen Li
Defa Zhang
- Verlag
- Springer Berlin Heidelberg
- Sequenznummer
- 6