Skip to main content
Erschienen in: Polymer Bulletin 3/2018

24.05.2017 | Original Paper

A novel and homogeneous scaffold material: preparation and evaluation of alginate/bacterial cellulose nanocrystals/collagen composite hydrogel for tissue engineering

verfasst von: Huiqiong Yan, Denggao Huang, Xiuqiong Chen, Haifang Liu, Yuhong Feng, Zhendong Zhao, Zihao Dai, Xueqin Zhang, Qiang Lin

Erschienen in: Polymer Bulletin | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Alginate is a well-known biomaterial which has been widely used in tissue engineering due to its excellent property. However, there are still several drawbacks, such as weak mechanical strength, the lack of cell recognition sites for cell adhesion, extensive swelling and uncontrolled degradation that limit its practical application. Therefore, the internal gelation using CaCO3–GDL complex and the incorporation of bacterial cellulose nanocrystals (BCNs) and type I collagen (COL) as the reinforcing component into alginate matrix were proposed to prepare the novel and homogeneous alginate/bacterial cellulose nanocrystals/collagen composite scaffold (ALG/BCNs/COL). The morphology, porosity, mechanical property, swelling and degradation behavior, and cytotoxicity of the resultant scaffold were investigated. The experimental results showed that ALG/BCNs/COL revealed good three-dimensional (3D) architecture as well as lamellar and porous morphologies. The incorporation of BCNs into alginate matrix obviously decreased the pore size and maintained the porosity of ALG/BCNs/COL, which was in favour of mechanical integrity. FT-IR spectra and XRD analysis revealed that the components of ALG/BCNs/COL, such as SA, BCNs and COL were combined together by intermolecular hydrogen bonds, which could effectively inhibit large swelling and retard the biodegradation of the composite scaffold. Finally, cell studies results indicated that both MC3T3-E1 and h-AMS cells were viable and proliferate well on the composite scaffold.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Vallée F, Müller C, Durand A, Schimchowitsch S, Dellacherie E, Kelche C, Cassel JC, Leonard M (2009) Synthesis and rheological properties of hydrogels based on amphiphilic alginate-amide derivatives. Carbohyd Res 344:223–228CrossRef Vallée F, Müller C, Durand A, Schimchowitsch S, Dellacherie E, Kelche C, Cassel JC, Leonard M (2009) Synthesis and rheological properties of hydrogels based on amphiphilic alginate-amide derivatives. Carbohyd Res 344:223–228CrossRef
2.
Zurück zum Zitat Bu H, Kjøniksen AL, Elgsaeter A, Nyström B (2006) Interaction of unmodified and hydrophobically modified alginate with sodium dodecyl sulfate in dilute aqueous solution calorimetric, rheological, and turbidity studies. Colloid Surface A 278:166–174CrossRef Bu H, Kjøniksen AL, Elgsaeter A, Nyström B (2006) Interaction of unmodified and hydrophobically modified alginate with sodium dodecyl sulfate in dilute aqueous solution calorimetric, rheological, and turbidity studies. Colloid Surface A 278:166–174CrossRef
3.
Zurück zum Zitat Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305CrossRef Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305CrossRef
4.
Zurück zum Zitat Ghadban A, Albertin L, Rinaudo M, Heyraud A (2012) Biohybrid glycopolymer capable of ionotropic gelation. Biomacromolecules 13:3108–3119CrossRef Ghadban A, Albertin L, Rinaudo M, Heyraud A (2012) Biohybrid glycopolymer capable of ionotropic gelation. Biomacromolecules 13:3108–3119CrossRef
5.
Zurück zum Zitat Yan H, Chen X, Li J, Feng Y, Shi Z, Wang X, Lin Q (2016) Synthesis of alginate derivative via the Ugi reaction and itscharacterization. Carbohyd Polym 136:757–763CrossRef Yan H, Chen X, Li J, Feng Y, Shi Z, Wang X, Lin Q (2016) Synthesis of alginate derivative via the Ugi reaction and itscharacterization. Carbohyd Polym 136:757–763CrossRef
6.
Zurück zum Zitat d’Ayala GG, Malinconico M, Laurienzo P (2008) Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 13:2069–2106CrossRef d’Ayala GG, Malinconico M, Laurienzo P (2008) Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules 13:2069–2106CrossRef
7.
Zurück zum Zitat Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10:1646–1662CrossRef Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10:1646–1662CrossRef
8.
Zurück zum Zitat Ionita M, Pandele MA, Iovu H (2013) Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohyd Polym 94:339–344CrossRef Ionita M, Pandele MA, Iovu H (2013) Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohyd Polym 94:339–344CrossRef
9.
Zurück zum Zitat Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879CrossRef Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879CrossRef
10.
Zurück zum Zitat Li Q, Liu CG, Huang ZH, Xue FF (2011) Preparation and characterization of nanoparticles based on hydrophobic alginate derivative as carriers for sustained release of vitamin D3. J Agric Food Chem 59:1962–1967CrossRef Li Q, Liu CG, Huang ZH, Xue FF (2011) Preparation and characterization of nanoparticles based on hydrophobic alginate derivative as carriers for sustained release of vitamin D3. J Agric Food Chem 59:1962–1967CrossRef
11.
Zurück zum Zitat Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohyd Polym 98:1585–1598CrossRef Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohyd Polym 98:1585–1598CrossRef
12.
Zurück zum Zitat Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin GP, Suedee R (2006) Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. J Control Release 113:43–56CrossRef Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin GP, Suedee R (2006) Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol. J Control Release 113:43–56CrossRef
13.
Zurück zum Zitat Prang P, Muller R, Eljaouhari A, Heckmann K, Kunz W, Weber T, Faber C, Vroemen M, Bogdahn U, Weidner N (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate based anisotropic capillary hydrogels. Biomaterials 27:3560–3569 Prang P, Muller R, Eljaouhari A, Heckmann K, Kunz W, Weber T, Faber C, Vroemen M, Bogdahn U, Weidner N (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate based anisotropic capillary hydrogels. Biomaterials 27:3560–3569
14.
Zurück zum Zitat Dhoot NO, Tobias CA, Fischer I, Wheatley MA (2004) Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth. J Biomed Mater Res A 71A:191–200CrossRef Dhoot NO, Tobias CA, Fischer I, Wheatley MA (2004) Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth. J Biomed Mater Res A 71A:191–200CrossRef
15.
Zurück zum Zitat Mosahebi A, Wiberg M, Terenghi G (2003) Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng 9:209–218CrossRef Mosahebi A, Wiberg M, Terenghi G (2003) Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng 9:209–218CrossRef
16.
Zurück zum Zitat Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415CrossRef Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415CrossRef
17.
Zurück zum Zitat Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRef Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRef
18.
Zurück zum Zitat Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8(2):287–298CrossRef Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8(2):287–298CrossRef
19.
Zurück zum Zitat Domingues RMA, Gomes ME, Rui L, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15:2327–2346CrossRef Domingues RMA, Gomes ME, Rui L, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15:2327–2346CrossRef
20.
Zurück zum Zitat Shelke NB, James R, Laurencin CT, Kumbar SG (2014) Polysaccharidebiomaterials for drug delivery and regenerative engineering. Polym Advan Technol 25(5):448–460CrossRef Shelke NB, James R, Laurencin CT, Kumbar SG (2014) Polysaccharidebiomaterials for drug delivery and regenerative engineering. Polym Advan Technol 25(5):448–460CrossRef
21.
Zurück zum Zitat Ullah H, Wahid F, Santos HA, Khan T (2016) Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohyd Polym 150:330–352CrossRef Ullah H, Wahid F, Santos HA, Khan T (2016) Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohyd Polym 150:330–352CrossRef
22.
Zurück zum Zitat Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5:3847–3854CrossRef Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5:3847–3854CrossRef
23.
Zurück zum Zitat Liu J, Cheng F, Grénman H, Spoljaric S, Seppälä J, Eriksson JE, Willför S, Xu C (2016) Development of nanocellulose scaffolds with tunable structures to support 3D cell culture. Carbohyd Polym 148:259–271CrossRef Liu J, Cheng F, Grénman H, Spoljaric S, Seppälä J, Eriksson JE, Willför S, Xu C (2016) Development of nanocellulose scaffolds with tunable structures to support 3D cell culture. Carbohyd Polym 148:259–271CrossRef
24.
Zurück zum Zitat Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 22:511–521CrossRef Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 22:511–521CrossRef
25.
Zurück zum Zitat Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grøndahl L (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 8:2533–2541CrossRef Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grøndahl L (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 8:2533–2541CrossRef
26.
Zurück zum Zitat Paximada P, Tsouko E, Kopsahelis N, Koutinas AA, Mandala I (2016) Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocolloid 53:225–232CrossRef Paximada P, Tsouko E, Kopsahelis N, Koutinas AA, Mandala I (2016) Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocolloid 53:225–232CrossRef
27.
Zurück zum Zitat Zhong L, Fu S, Peng X, Zhan H, Sun R (2012) Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohyd Polym 90(1):644–649CrossRef Zhong L, Fu S, Peng X, Zhan H, Sun R (2012) Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohyd Polym 90(1):644–649CrossRef
28.
Zurück zum Zitat Mo Y, Guo R, Liu J, Lan Y, Zhang Y, Xue W, Zhang Y (2015) Preparation and properties of PLGA nanofiber membranes reinforced with cellulose nanocrystals. Colloid Surface B 132:177–184CrossRef Mo Y, Guo R, Liu J, Lan Y, Zhang Y, Xue W, Zhang Y (2015) Preparation and properties of PLGA nanofiber membranes reinforced with cellulose nanocrystals. Colloid Surface B 132:177–184CrossRef
29.
Zurück zum Zitat Quinlan E, López-Noriega A, Thompson E, Kelly HM, Cryan SA, O’Brien FJ (2015) Development of collagen–hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. J Control Release 198:71–79CrossRef Quinlan E, López-Noriega A, Thompson E, Kelly HM, Cryan SA, O’Brien FJ (2015) Development of collagen–hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering. J Control Release 198:71–79CrossRef
30.
Zurück zum Zitat Romanelli SM, Fath KR, Phekoo AP, Knoll GA, Banerjee IA (2015) Layer-by-layer assembly of peptide based bioorganic–inorganic hybrid scaffolds and their interactions with osteoblastic MC3T3-E1 cells. Mater Sci Eng C 51:316–328CrossRef Romanelli SM, Fath KR, Phekoo AP, Knoll GA, Banerjee IA (2015) Layer-by-layer assembly of peptide based bioorganic–inorganic hybrid scaffolds and their interactions with osteoblastic MC3T3-E1 cells. Mater Sci Eng C 51:316–328CrossRef
31.
Zurück zum Zitat Chen F, Tian M, Zhang D, Wang J, Wang Q, Yu X, Zhang X, Wan C (2012) Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering. Mater Sci Eng C 32:310–320CrossRef Chen F, Tian M, Zhang D, Wang J, Wang Q, Yu X, Zhang X, Wan C (2012) Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering. Mater Sci Eng C 32:310–320CrossRef
32.
Zurück zum Zitat Hu Z, Ballinger S, Pelton R, Cranston ED (2015) Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J Colloid Interface Sci 439:139–148CrossRef Hu Z, Ballinger S, Pelton R, Cranston ED (2015) Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J Colloid Interface Sci 439:139–148CrossRef
33.
Zurück zum Zitat Kim HL, Jung GY, Yoon JH, Han JS, Park YJ, Kim DG, Zhang M, Kim DJ (2015) Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng, C 54:20–25CrossRef Kim HL, Jung GY, Yoon JH, Han JS, Park YJ, Kim DG, Zhang M, Kim DJ (2015) Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng, C 54:20–25CrossRef
34.
Zurück zum Zitat Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524CrossRef Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524CrossRef
35.
Zurück zum Zitat Valente JFA, Valente TAM, Alves P, Ferreira P, Silva A, Correia IJ (2012) Alginate based scaffolds for bone tissue engineering. Mater Sci Eng C 32:2596–2603CrossRef Valente JFA, Valente TAM, Alves P, Ferreira P, Silva A, Correia IJ (2012) Alginate based scaffolds for bone tissue engineering. Mater Sci Eng C 32:2596–2603CrossRef
36.
Zurück zum Zitat Islam MS, Karim MR (2010) Fabrication and characterization of poly (vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloid Surface A 366:135–140CrossRef Islam MS, Karim MR (2010) Fabrication and characterization of poly (vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloid Surface A 366:135–140CrossRef
37.
Zurück zum Zitat Yang JS, Ren HB, Xie YJ (2011) Synthesis of amidic alginate derivatives and their application in microencapsulation of λ-cyhalothrin. Biomacromolecules 12:2982–2987CrossRef Yang JS, Ren HB, Xie YJ (2011) Synthesis of amidic alginate derivatives and their application in microencapsulation of λ-cyhalothrin. Biomacromolecules 12:2982–2987CrossRef
38.
Zurück zum Zitat Huang C, Guo HJ, Xiong L, Wang B, Shi SL, Chen XF, Lin XQ, Wang C, Luo J, Chen XD (2016) Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohyd Polym 136:198–202CrossRef Huang C, Guo HJ, Xiong L, Wang B, Shi SL, Chen XF, Lin XQ, Wang C, Luo J, Chen XD (2016) Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohyd Polym 136:198–202CrossRef
39.
Zurück zum Zitat Jia Y, Zhai X, Fu W, Liu Y, Li F, Zhong C (2016) Surfactant-free emulsions stabilized by tempo-oxidized bacterial cellulose. Carbohyd Polym 151:907–915CrossRef Jia Y, Zhai X, Fu W, Liu Y, Li F, Zhong C (2016) Surfactant-free emulsions stabilized by tempo-oxidized bacterial cellulose. Carbohyd Polym 151:907–915CrossRef
40.
Zurück zum Zitat Dehnad D, Mirzaei H, Emam-Djomeh Z, Jafari S, Dadashi S (2014) Thermal and antimicrobial properties of chitosan–nanocellulose films for extending shelf life of ground meat. Carbohyd Polym 109:148–154CrossRef Dehnad D, Mirzaei H, Emam-Djomeh Z, Jafari S, Dadashi S (2014) Thermal and antimicrobial properties of chitosan–nanocellulose films for extending shelf life of ground meat. Carbohyd Polym 109:148–154CrossRef
41.
Zurück zum Zitat Moriana R, Vilaplana F, Ek M (2016) Cellulose nanocrystals from forest residues as reinforcing agents for composites: a study from macro- to nano-dimensions. Carbohyd Polym 139:139–149CrossRef Moriana R, Vilaplana F, Ek M (2016) Cellulose nanocrystals from forest residues as reinforcing agents for composites: a study from macro- to nano-dimensions. Carbohyd Polym 139:139–149CrossRef
42.
Zurück zum Zitat Sowjanya JA, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloid Surf B 109:294–300CrossRef Sowjanya JA, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloid Surf B 109:294–300CrossRef
43.
Zurück zum Zitat Turco G, Marsich E, Bellomo F, Semeraro S, Donati I, Brun F, Grandolfo M, Accardo A, Paoletti S (2009) Alginate/hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromolecules 10:1575–1583CrossRef Turco G, Marsich E, Bellomo F, Semeraro S, Donati I, Brun F, Grandolfo M, Accardo A, Paoletti S (2009) Alginate/hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromolecules 10:1575–1583CrossRef
44.
Zurück zum Zitat Wu S, Liu X, Yeung KWK, Liu CS, Yang X (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R 80(2014):1–36CrossRef Wu S, Liu X, Yeung KWK, Liu CS, Yang X (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R 80(2014):1–36CrossRef
45.
Zurück zum Zitat Baysal K, Aroguz AZ, Adiguzel Z, Baysal BM (2013) Chitosan/alginate crosslinked hydrogels: preparation, characterization and application for cell growth purposes. Int J Biol Macromol 59:342–348CrossRef Baysal K, Aroguz AZ, Adiguzel Z, Baysal BM (2013) Chitosan/alginate crosslinked hydrogels: preparation, characterization and application for cell growth purposes. Int J Biol Macromol 59:342–348CrossRef
Metadaten
Titel
A novel and homogeneous scaffold material: preparation and evaluation of alginate/bacterial cellulose nanocrystals/collagen composite hydrogel for tissue engineering
verfasst von
Huiqiong Yan
Denggao Huang
Xiuqiong Chen
Haifang Liu
Yuhong Feng
Zhendong Zhao
Zihao Dai
Xueqin Zhang
Qiang Lin
Publikationsdatum
24.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 3/2018
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-017-2077-0

Weitere Artikel der Ausgabe 3/2018

Polymer Bulletin 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.