Skip to main content
Erschienen in: Wireless Personal Communications 3/2017

24.05.2017

A Novel Approach for Automatic Modulation Classification via Hidden Markov Models and Gabor Features

verfasst von: Sajjad Ahmed Ghauri, Ijaz Mansoor Qureshi, Aqdas Naveed Malik

Erschienen in: Wireless Personal Communications | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a novel approach is proposed for classification of pulse amplitude modulated (PAM) and quadrature amplitude modulated (QAM) signals. The automatic modulation classification is the intermediate step between detection and demodulation of the signal. In this paper, we propose a classifier for digital modulated signals such as PAM and QAM that differs with the existing classifiers. The gabor parameters have been used as input features and the proposed classifier uses hidden markov model in conjunction with genetic algorithm (GA). The fitness function for the genetic algorithm is probability of observation sequence given the model. The objective is to maximize the probability of observation using Baum–Welch algorithm and GA. To improve the classification accuracy, classification process has been divided in two phases. Simulation results shows the significant performance improvement while compare with other existing techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Azzouz, E. E., & Nandi, A. K. (1996). Automatic modulation recognition of communication signals. Kluwer Academic Publishers. Azzouz, E. E., & Nandi, A. K. (1996). Automatic modulation recognition of communication signals. Kluwer Academic Publishers.
2.
Zurück zum Zitat Nandi, A. K., & Azzouz, E. E. (1998). Algorithms for automatic modulation recognition of communication signals. IEEE Transactions on Communications, 46, 431–436.CrossRef Nandi, A. K., & Azzouz, E. E. (1998). Algorithms for automatic modulation recognition of communication signals. IEEE Transactions on Communications, 46, 431–436.CrossRef
3.
Zurück zum Zitat Ramkumar, B. (2009). Automatic modulation classification for cognitive radios using cyclic feature detection. IEEE Circuits and Systems Magazine, 9, 27–45.CrossRef Ramkumar, B. (2009). Automatic modulation classification for cognitive radios using cyclic feature detection. IEEE Circuits and Systems Magazine, 9, 27–45.CrossRef
4.
Zurück zum Zitat Dobre, O. A., Abdi, A., Bar-Ness, Y., & Su, W. (2007). A survey of automatic modulation classification techniques: classical approaches and new trends. IET Communication, 1, 137–156.CrossRef Dobre, O. A., Abdi, A., Bar-Ness, Y., & Su, W. (2007). A survey of automatic modulation classification techniques: classical approaches and new trends. IET Communication, 1, 137–156.CrossRef
5.
Zurück zum Zitat Sue, W., Jefferson, L. X., & Mengchou, Z. (2008). Real-time modulation classification based on maximum likelihood. IEEE Communications letters, 12(11), 781–784. Sue, W., Jefferson, L. X., & Mengchou, Z. (2008). Real-time modulation classification based on maximum likelihood. IEEE Communications letters, 12(11), 781–784.
6.
Zurück zum Zitat Yang, Y., Chang, J. N., Liu, J. C., & Liu, C. H. (2007). Maximum log-likelihood function based QAM signal classification over fading channel. Wireless Personal Communications, 28, 77–94.CrossRef Yang, Y., Chang, J. N., Liu, J. C., & Liu, C. H. (2007). Maximum log-likelihood function based QAM signal classification over fading channel. Wireless Personal Communications, 28, 77–94.CrossRef
7.
Zurück zum Zitat Panagiotou, P., Anastasopoulos, A., & Polydoros, A. (2000). Likelihood ratio tests for modulation classification. In Proceedings of the IEEE MILCOM, vol. 2, (pp. 670–674). Panagiotou, P., Anastasopoulos, A., & Polydoros, A. (2000). Likelihood ratio tests for modulation classification. In Proceedings of the IEEE MILCOM, vol. 2, (pp. 670–674).
8.
Zurück zum Zitat Hameed, F., Dobre, O., & Popescu, D. (2009). On the likelihood based approach to modulation classification. IEEE Transactions on Wireless Communication, 8(12), 5884–5892.CrossRef Hameed, F., Dobre, O., & Popescu, D. (2009). On the likelihood based approach to modulation classification. IEEE Transactions on Wireless Communication, 8(12), 5884–5892.CrossRef
9.
Zurück zum Zitat Ramezani Kebrya, A., Kim, I.-M., Kim, D. I., Chan, F., & Inkol, R. (2013). Likelihood based modulation classification for multiple antenna receiver. IEEE Transactions on Communications, 61(9), 3816–3829.CrossRef Ramezani Kebrya, A., Kim, I.-M., Kim, D. I., Chan, F., & Inkol, R. (2013). Likelihood based modulation classification for multiple antenna receiver. IEEE Transactions on Communications, 61(9), 3816–3829.CrossRef
10.
Zurück zum Zitat Sergienko, A. B., & Osipov, A. V. (2014). Digital modulation recognition using circular harmonic approximation of likelihood function. In IEEE international conference on acoustic, speech and signal processing (ICASSP), (pp. 3460–3463). Sergienko, A. B., & Osipov, A. V. (2014). Digital modulation recognition using circular harmonic approximation of likelihood function. In IEEE international conference on acoustic, speech and signal processing (ICASSP), (pp. 3460–3463).
11.
Zurück zum Zitat Zhu, Z., & Nandi, A. K. (2014). Blind digital modulation classification using minimum distance centroid estimator and non-parametric likelihood function. IEEE Transactions on Wireless Communication, 13(8), 4483–4494.CrossRef Zhu, Z., & Nandi, A. K. (2014). Blind digital modulation classification using minimum distance centroid estimator and non-parametric likelihood function. IEEE Transactions on Wireless Communication, 13(8), 4483–4494.CrossRef
12.
Zurück zum Zitat Lin, Y. C., & Jay Kuo, C. C. (1997). Classification of quadrature amplitude modulated (QAM) signals via sequential probability ratio test (SPRT). Signal Processing, 60, 263–280.CrossRefMATH Lin, Y. C., & Jay Kuo, C. C. (1997). Classification of quadrature amplitude modulated (QAM) signals via sequential probability ratio test (SPRT). Signal Processing, 60, 263–280.CrossRefMATH
13.
Zurück zum Zitat Soltan Mohammadi, E., & Naraghi Pour, M. (2013). Blind modulation classification over fading channels using expectation maximization. IEEE Communication Letters, 17(9), 1692–1695.CrossRef Soltan Mohammadi, E., & Naraghi Pour, M. (2013). Blind modulation classification over fading channels using expectation maximization. IEEE Communication Letters, 17(9), 1692–1695.CrossRef
14.
Zurück zum Zitat Wei, Su, Xu, Jefferson L., & Zhou, Mengchu. (2008). Real time modulation classification based on maximum likelihood. IEEE Communication Letters, 12(11), 801–803.CrossRef Wei, Su, Xu, Jefferson L., & Zhou, Mengchu. (2008). Real time modulation classification based on maximum likelihood. IEEE Communication Letters, 12(11), 801–803.CrossRef
15.
Zurück zum Zitat Xu, Jefferson L., Wei, Su, & Zhou, Mengchu. (2010). Software defined radio equipped with rapid modulation recognition. IEEE Transactions on Vehicular Technology, 59(4), 1659–1667.CrossRef Xu, Jefferson L., Wei, Su, & Zhou, Mengchu. (2010). Software defined radio equipped with rapid modulation recognition. IEEE Transactions on Vehicular Technology, 59(4), 1659–1667.CrossRef
16.
Zurück zum Zitat Ghauri, S. A., Qureshi, I. M., Malik, A. N., & Cheema, T. A. (2014). Automatic digital modulation recognition technique using higher order cummulants on faded channels. Journal of Basic and Applied Scientific Research, 4(3), 1–12. Ghauri, S. A., Qureshi, I. M., Malik, A. N., & Cheema, T. A. (2014). Automatic digital modulation recognition technique using higher order cummulants on faded channels. Journal of Basic and Applied Scientific Research, 4(3), 1–12.
17.
Zurück zum Zitat Ghauri, S. A., Qureshi, I. M., Cheema, T. A., & Malik, A. N. (2014). A Novel Modulation Classification Approach Using Gabor Filter Network. Cairo: The World Scientific Journal, Hindwai Publishers. Ghauri, S. A., Qureshi, I. M., Cheema, T. A., & Malik, A. N. (2014). A Novel Modulation Classification Approach Using Gabor Filter Network. Cairo: The World Scientific Journal, Hindwai Publishers.
18.
Zurück zum Zitat Ghauri, S. A., Qureshi, I. M., Malik, A. N., & Cheema, T. A. (2013). Higher order cummulants based digital modulation recognition scheme. Research Journal of Applied Sciences Engineering and Technology (RJASET), 6(20), 3910–3915. Ghauri, S. A., Qureshi, I. M., Malik, A. N., & Cheema, T. A. (2013). Higher order cummulants based digital modulation recognition scheme. Research Journal of Applied Sciences Engineering and Technology (RJASET), 6(20), 3910–3915.
19.
Zurück zum Zitat Ahmadi, Negar. (2011). Modulation recognition based on Constellation shape using TTSAS algorithm and template matching. Journal of Pattern Recognition Research, 1, 43–55.CrossRef Ahmadi, Negar. (2011). Modulation recognition based on Constellation shape using TTSAS algorithm and template matching. Journal of Pattern Recognition Research, 1, 43–55.CrossRef
20.
Zurück zum Zitat He, Tao, & Zhou, Zheng-Ou. (2008). Classification of modulated signals using multifractal features. Journal of the Chinese Institute of Engineers, 31(2), 335–338.CrossRef He, Tao, & Zhou, Zheng-Ou. (2008). Classification of modulated signals using multifractal features. Journal of the Chinese Institute of Engineers, 31(2), 335–338.CrossRef
21.
Zurück zum Zitat Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of Genetic programming and KNN. IEEE Transaction on Wireless Communication, 11(8), 2742–2750. Aslam, M. W., Zhu, Z., & Nandi, A. K. (2012). Automatic modulation classification using combination of Genetic programming and KNN. IEEE Transaction on Wireless Communication, 11(8), 2742–2750.
22.
Zurück zum Zitat Puengnim, A., Thomas, N., Tourneret, J. Y., & Vidal, J. (2010). Classification of linear and nonlinear modulation using the Baum–Welch algorithms and MCMC methods. Signal Processing, 90(12), 3342–3355.CrossRefMATH Puengnim, A., Thomas, N., Tourneret, J. Y., & Vidal, J. (2010). Classification of linear and nonlinear modulation using the Baum–Welch algorithms and MCMC methods. Signal Processing, 90(12), 3342–3355.CrossRefMATH
23.
Zurück zum Zitat Dulek, B., Ozdemir, O., Varshney, P. K., & Su, W. (2014). A novel approach to dictionary construction for Automatic modulation classification. Journal of the Franklin Institute, 351, 2991–3012.MathSciNetCrossRef Dulek, B., Ozdemir, O., Varshney, P. K., & Su, W. (2014). A novel approach to dictionary construction for Automatic modulation classification. Journal of the Franklin Institute, 351, 2991–3012.MathSciNetCrossRef
24.
Zurück zum Zitat Dobre, O. A., Abdi, A., Bar Ness, Y., & Su, W. (2010). Cyclostatoinarity based modulation classification of linear digital modulations in flat fading channels. Wireless Personal Communication, 54, 699–717.CrossRef Dobre, O. A., Abdi, A., Bar Ness, Y., & Su, W. (2010). Cyclostatoinarity based modulation classification of linear digital modulations in flat fading channels. Wireless Personal Communication, 54, 699–717.CrossRef
25.
Zurück zum Zitat Swami, A., & Sadler, B. (2000). Hierarchical digital modulation classification using cummulants. IEEE Transactions on Communication, 48(3), 416–429.CrossRef Swami, A., & Sadler, B. (2000). Hierarchical digital modulation classification using cummulants. IEEE Transactions on Communication, 48(3), 416–429.CrossRef
26.
Zurück zum Zitat Liu, P., & Shui, P. L. (2014). Digital modulation classifier with rejection ability via greedy convex hull learning and alternative convex hull shrinkage in feature space. IEEE Transaction on Wireless Communication, 13(5), 2683–2695.CrossRef Liu, P., & Shui, P. L. (2014). Digital modulation classifier with rejection ability via greedy convex hull learning and alternative convex hull shrinkage in feature space. IEEE Transaction on Wireless Communication, 13(5), 2683–2695.CrossRef
27.
Zurück zum Zitat Su, W. (2013). Feature space analysis of modulation classification using very higher order statistics. IEEE Communication Letters, 17(9), 1688–1691.CrossRef Su, W. (2013). Feature space analysis of modulation classification using very higher order statistics. IEEE Communication Letters, 17(9), 1688–1691.CrossRef
28.
Zurück zum Zitat Kharbech, S., Dayoub, I., Zwingelstein Colin, M., Simon, E. P., & Hassan, K. (2014). Blind digital modulation identification for time selective MIMO channels. IEEE Wireless Communication Letters, 3(4), 373–376.CrossRef Kharbech, S., Dayoub, I., Zwingelstein Colin, M., Simon, E. P., & Hassan, K. (2014). Blind digital modulation identification for time selective MIMO channels. IEEE Wireless Communication Letters, 3(4), 373–376.CrossRef
29.
Zurück zum Zitat Marey, M., & Dobre, O. A. (2014). Blind modulation classification algorithm for single and multiple antenna systems over frequency selective channels. IEEE Signal Processing Letters, 21(9), 1098–1102.CrossRef Marey, M., & Dobre, O. A. (2014). Blind modulation classification algorithm for single and multiple antenna systems over frequency selective channels. IEEE Signal Processing Letters, 21(9), 1098–1102.CrossRef
30.
Zurück zum Zitat Avci, E., Hanbay, D., & Varol, A. (2007). An expert discrete wavelet adaptive network based fuzzy inference system for digital modulation recognition. Expert System with Applications, 33, 582–589.CrossRef Avci, E., Hanbay, D., & Varol, A. (2007). An expert discrete wavelet adaptive network based fuzzy inference system for digital modulation recognition. Expert System with Applications, 33, 582–589.CrossRef
31.
Zurück zum Zitat Shi, Q., Gong, Y., & Guan, Y. L. (2011). Modulation classification for asynchronous high-order QAM signals. Wireless Communications and Mobile Computing, 11, 1415–1422.CrossRef Shi, Q., Gong, Y., & Guan, Y. L. (2011). Modulation classification for asynchronous high-order QAM signals. Wireless Communications and Mobile Computing, 11, 1415–1422.CrossRef
32.
Zurück zum Zitat Dobre, O. A., Bar-Ness, Y., & Su, W. (2003). Higher-order cyclic cummulants for high order modulation classification. In Proceedings of the 2003 IEEE MILCOM, (pp. 112–117). Dobre, O. A., Bar-Ness, Y., & Su, W. (2003). Higher-order cyclic cummulants for high order modulation classification. In Proceedings of the 2003 IEEE MILCOM, (pp. 112–117).
33.
Zurück zum Zitat Xi, S., & Wu, H. C. (2006). Robust automatic modulation classification using cummulants features in the presence of fading channels. IEEE Wireless Communication and Networking Conference, 4, 2094–2099. Xi, S., & Wu, H. C. (2006). Robust automatic modulation classification using cummulants features in the presence of fading channels. IEEE Wireless Communication and Networking Conference, 4, 2094–2099.
34.
Zurück zum Zitat Wu, H., Saquib, M., & Yun, Z. (2008). Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Transactions on Wireless Communications, 7, 3098–3105.CrossRef Wu, H., Saquib, M., & Yun, Z. (2008). Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Transactions on Wireless Communications, 7, 3098–3105.CrossRef
35.
Zurück zum Zitat Chaithanya, V., & Reddy, V. U., (2010). Blind modulation classification in the presence of carrier frequency offset. In Proceedings of the 2010 international conference on signal processing and communications, (pp. 1–5). Chaithanya, V., & Reddy, V. U., (2010). Blind modulation classification in the presence of carrier frequency offset. In Proceedings of the 2010 international conference on signal processing and communications, (pp. 1–5).
36.
Zurück zum Zitat Puengnim, A., Thomas, N., Tourneret J. Y., & Vidal, J. (2007). Hidden markov models for digital modulation classification in unknown ISI channels. In 15th European signal processing conference, (pp. 1882–1886). Puengnim, A., Thomas, N., Tourneret J. Y., & Vidal, J. (2007). Hidden markov models for digital modulation classification in unknown ISI channels. In 15th European signal processing conference, (pp. 1882–1886).
37.
Zurück zum Zitat Mirrarab, M. R., & Sobhani, M. A., Robust modulation classification for PSK/QAM/ASK using higher order cummulants. In International conference on information, communications and signals, (pp.1–4). Mirrarab, M. R., & Sobhani, M. A., Robust modulation classification for PSK/QAM/ASK using higher order cummulants. In International conference on information, communications and signals, (pp.1–4).
Metadaten
Titel
A Novel Approach for Automatic Modulation Classification via Hidden Markov Models and Gabor Features
verfasst von
Sajjad Ahmed Ghauri
Ijaz Mansoor Qureshi
Aqdas Naveed Malik
Publikationsdatum
24.05.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4378-x

Weitere Artikel der Ausgabe 3/2017

Wireless Personal Communications 3/2017 Zur Ausgabe

Neuer Inhalt