Skip to main content
Erschienen in: Electrical Engineering 3/2018

29.07.2017 | Original Paper

A novel approach for determining optimal number and placement of static var compensator device to enhance the dynamic performance in power systems

verfasst von: Van Dai Le, Xinran Li, Peiqiang Li, Cao Quyen Le

Erschienen in: Electrical Engineering | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Increasing in the scale and complexity of interconnected power systems was because of the growth of electricity demands, leading to multiple electromechanical oscillations despite having support of the power system stabilizer (PSS). Therefore, the dynamic performance of the existing networks should enhance. One type of flexible alternating current transmission system devices, namely the static var compensator (SVC), can be installed at the buses to maintain and/or control particular parameters of the electrical power system by exchanging capacitive and/or inductive current. However, the performance of SVC device highly depends upon its parameters, sizes, and suitable number and location in the power network. Hence, the optimal location for SVC has become a key issue; in this paper, we propose a novel approach for the suitable number and location for SVC by using critical energy analysis based on the Gramian matrices that the solution framework applied an algorithm based on the Lyapunov equations and the balanced realization technique. The optimal placement is determined by (1) analyzing the small-signal stability to seek number of feasible locations and (2) comparing these feasible locations by analyzing the transient stability through various simulation cases. The effectiveness of the proposed method is compared with the other optimal method and verified on the 39-bus New England system by the simulation results based on the power system simulation engineering (PSS/E) and MATLAB programs. The obtained result shows that the SVC is installed at the single or multi-location having the total maximum Gramian energy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lai LL, Zhang HT, Mishra S, Ramasubramanian D, Lai CS, Xu FY (2012) Lessons learned from July 2012 Indian blackout. In: 9th international conference on advances in power system control, operation and management (APSCOM), pp 1–6 Lai LL, Zhang HT, Mishra S, Ramasubramanian D, Lai CS, Xu FY (2012) Lessons learned from July 2012 Indian blackout. In: 9th international conference on advances in power system control, operation and management (APSCOM), pp 1–6
2.
Zurück zum Zitat Larsson S, Ek E (2004) The black-out in southern Sweden and eastern Denmark, September 23, 2003. In: Power engineering society general meeting, pp 1668–1672 Larsson S, Ek E (2004) The black-out in southern Sweden and eastern Denmark, September 23, 2003. In: Power engineering society general meeting, pp 1668–1672
3.
Zurück zum Zitat Gheorghe AV, Masera M, Weijnen M, De Vries LJ (2006) Critical infrastructures at risk: securing the European electric power system. Springer, BerlinCrossRef Gheorghe AV, Masera M, Weijnen M, De Vries LJ (2006) Critical infrastructures at risk: securing the European electric power system. Springer, BerlinCrossRef
4.
Zurück zum Zitat Kosterev DN, Taylor CW, Mittelstadt WA (1999) Model validation for the August 10, 1996 WSCC system outage. IEEE Trans Power Syst 14:967–979CrossRef Kosterev DN, Taylor CW, Mittelstadt WA (1999) Model validation for the August 10, 1996 WSCC system outage. IEEE Trans Power Syst 14:967–979CrossRef
5.
Zurück zum Zitat Klein M, Rogers GJ, Kundur P (1991) A fundamental study of inter-area oscillations in power systems. IEEE Trans Power Syst 6(3):914–921CrossRef Klein M, Rogers GJ, Kundur P (1991) A fundamental study of inter-area oscillations in power systems. IEEE Trans Power Syst 6(3):914–921CrossRef
6.
Zurück zum Zitat Ma J, Wang T, Wang S, Gao X, Zhu X, Wang Z, Thorp JS (2014) Application of dual Youla parameterization based adaptive wide-area damping control for power system oscillations. IEEE Trans Power Syst 29:1602–1610CrossRef Ma J, Wang T, Wang S, Gao X, Zhu X, Wang Z, Thorp JS (2014) Application of dual Youla parameterization based adaptive wide-area damping control for power system oscillations. IEEE Trans Power Syst 29:1602–1610CrossRef
7.
Zurück zum Zitat Mhaskar UP, Kulkarni AM (2006) Power oscillation damping using FACTS devices: modal controllability, observability in local signals, and location of transfer function zeros. IEEE Trans Power Syst 21:285–294CrossRef Mhaskar UP, Kulkarni AM (2006) Power oscillation damping using FACTS devices: modal controllability, observability in local signals, and location of transfer function zeros. IEEE Trans Power Syst 21:285–294CrossRef
8.
Zurück zum Zitat Li Y, Zhou Y, Liu F, Cao Y, Rehtanz C (2017) Design and implementation of delay-dependent wide-area damping control for stability enhancement of power systems. IEEE Trans Smart Grid 8(4):1831–1842 Li Y, Zhou Y, Liu F, Cao Y, Rehtanz C (2017) Design and implementation of delay-dependent wide-area damping control for stability enhancement of power systems. IEEE Trans Smart Grid 8(4):1831–1842
9.
Zurück zum Zitat Li Y, Liu F, Cao Y (2015) Delay-dependent wide-area damping control for stability enhancement of HVDC/AC interconnected power systems. Control Eng Pract 37:43–54CrossRef Li Y, Liu F, Cao Y (2015) Delay-dependent wide-area damping control for stability enhancement of HVDC/AC interconnected power systems. Control Eng Pract 37:43–54CrossRef
10.
Zurück zum Zitat Dai LV, Tung DD, Quyen LC (2017) A Highly relevant method for incorporation of shunt connected FACTS device into multi-machine power system to dampen electromechanical oscillations. Energies 10(4):482CrossRef Dai LV, Tung DD, Quyen LC (2017) A Highly relevant method for incorporation of shunt connected FACTS device into multi-machine power system to dampen electromechanical oscillations. Energies 10(4):482CrossRef
11.
Zurück zum Zitat Van Dai L, Duc Tung D, Le Thang Dong T, Cao Quyen L (2017) Improving power system stability with Gramian matrix-based optimal setting of a single series FACTS device: feasibility study in Vietnamese power system. Complexity 2017:3014510. doi:10.1155/2017/3014510 Van Dai L, Duc Tung D, Le Thang Dong T, Cao Quyen L (2017) Improving power system stability with Gramian matrix-based optimal setting of a single series FACTS device: feasibility study in Vietnamese power system. Complexity 2017:3014510. doi:10.​1155/​2017/​3014510
12.
Zurück zum Zitat Rogers G (2012) Power system oscillations. Springer, Berlin Rogers G (2012) Power system oscillations. Springer, Berlin
13.
Zurück zum Zitat Kamwa I, Beland J, Trudel G, Grondin R, Lafond C, McNabb D (2006) Wide-area monitoring and control at Hydro-Québec: past, present and future. In: Power Engineering Society General Meeting, p 12 Kamwa I, Beland J, Trudel G, Grondin R, Lafond C, McNabb D (2006) Wide-area monitoring and control at Hydro-Québec: past, present and future. In: Power Engineering Society General Meeting, p 12
14.
Zurück zum Zitat Al-Awami AT, Abdel-Magid YL, Abido MA (2007) A particle swarm based approach of power system stability enhancement with unified power flow controller. Int J Electr Power Energy Syst 29(3):251–259CrossRef Al-Awami AT, Abdel-Magid YL, Abido MA (2007) A particle swarm based approach of power system stability enhancement with unified power flow controller. Int J Electr Power Energy Syst 29(3):251–259CrossRef
15.
Zurück zum Zitat Hingorani N, Gyugyi L (2000) Understanding FACTS: concepts and technology of flexible AC transmission systems. Wiley, New York Hingorani N, Gyugyi L (2000) Understanding FACTS: concepts and technology of flexible AC transmission systems. Wiley, New York
16.
Zurück zum Zitat Gerbex S, Cherkaoui R, Germond AJ (2001) Optimal location of multi-type FACTS devices in a power system by means of genetic algorithms. IEEE Trans Power Syst 16(3):537–544CrossRef Gerbex S, Cherkaoui R, Germond AJ (2001) Optimal location of multi-type FACTS devices in a power system by means of genetic algorithms. IEEE Trans Power Syst 16(3):537–544CrossRef
17.
Zurück zum Zitat Cai LJ, Erlich I, Stamtsis G (2004) Optimal choice and allocation of FACTS devices in deregulated electricity market using genetic algorithms. In: Power systems conference and exposition, pp 201–207 Cai LJ, Erlich I, Stamtsis G (2004) Optimal choice and allocation of FACTS devices in deregulated electricity market using genetic algorithms. In: Power systems conference and exposition, pp 201–207
18.
Zurück zum Zitat Berizzi A, Bovo C, Ilea V (2011) Optimal placement of FACTS to mitigate congestions and inter-area oscillations. In: IEEE Trondheim PowerTech, pp 1–8 Berizzi A, Bovo C, Ilea V (2011) Optimal placement of FACTS to mitigate congestions and inter-area oscillations. In: IEEE Trondheim PowerTech, pp 1–8
19.
Zurück zum Zitat Yang N, Liu Q, McCalley JD (1998) TCSC controller design for damping interarea oscillations. IEEE Trans Power Syst 13(4):1304–1310CrossRef Yang N, Liu Q, McCalley JD (1998) TCSC controller design for damping interarea oscillations. IEEE Trans Power Syst 13(4):1304–1310CrossRef
20.
Zurück zum Zitat Le V, Li X, Li Y, Cao Y, Le C (2015) Optimal placement of TCSC using controllability Gramian to damp power system oscillations. Int Trans Electr Energy Syst 26:1493–1510CrossRef Le V, Li X, Li Y, Cao Y, Le C (2015) Optimal placement of TCSC using controllability Gramian to damp power system oscillations. Int Trans Electr Energy Syst 26:1493–1510CrossRef
21.
Zurück zum Zitat Van Dai L, Li X, Li P, Quyen LC (2016) An optimal location of static VAr compensator based on Gramian critical energy for damping oscillations in power systems. IEEJ Trans Electr Electr Eng 11:577–585CrossRef Van Dai L, Li X, Li P, Quyen LC (2016) An optimal location of static VAr compensator based on Gramian critical energy for damping oscillations in power systems. IEEJ Trans Electr Electr Eng 11:577–585CrossRef
22.
Zurück zum Zitat Aboul-Ela ME, Sallam AA, McCalley JD, Fouad AA (1996) Damping controller design for power system oscillations using global signals. Power IEEE Trans Syst 11(2):767–773CrossRef Aboul-Ela ME, Sallam AA, McCalley JD, Fouad AA (1996) Damping controller design for power system oscillations using global signals. Power IEEE Trans Syst 11(2):767–773CrossRef
23.
Zurück zum Zitat Verma MK, Srivastava SC (2005) Optimal placement of SVC for static and dynamic voltage security enhancement. Int J Emerg Electr Power Syst 2(2):1050 Verma MK, Srivastava SC (2005) Optimal placement of SVC for static and dynamic voltage security enhancement. Int J Emerg Electr Power Syst 2(2):1050
24.
Zurück zum Zitat Kumar BK, Singh SN, Srivastava SC (2007) Placement of FACTS controllers using modal controllability indices to damp out power system oscillations. IET Gener Trans Distrib 1(2):209–217CrossRef Kumar BK, Singh SN, Srivastava SC (2007) Placement of FACTS controllers using modal controllability indices to damp out power system oscillations. IET Gener Trans Distrib 1(2):209–217CrossRef
25.
Zurück zum Zitat Sadikovic R, Korba P, Andersson G (2005) Application of FACTS devices for damping of power system oscillations. In: IEEE Russia, Power Tech, pp 1–6 Sadikovic R, Korba P, Andersson G (2005) Application of FACTS devices for damping of power system oscillations. In: IEEE Russia, Power Tech, pp 1–6
26.
Zurück zum Zitat Magaji N, Mustafa MW (2008) Optimal location of FACTS devices for damping oscillations using residue factor. In: Power and energy conference (PECon), pp 1339–1344 Magaji N, Mustafa MW (2008) Optimal location of FACTS devices for damping oscillations using residue factor. In: Power and energy conference (PECon), pp 1339–1344
27.
Zurück zum Zitat Okamoto H, Kurita A, Sekine Y (1995) A method for identification of effective locations of variable impedance apparatus on enhancement of steady-state stability in large scale power systems. IEEE Trans Power Syst 10(3):1401–1407CrossRef Okamoto H, Kurita A, Sekine Y (1995) A method for identification of effective locations of variable impedance apparatus on enhancement of steady-state stability in large scale power systems. IEEE Trans Power Syst 10(3):1401–1407CrossRef
28.
Zurück zum Zitat Mansour Y, Xu W, Alvarado F, Rinzin C (1994) SVC placement using critical modes of voltage instability. IEEE Trans Power Syst 9(2):757–763CrossRef Mansour Y, Xu W, Alvarado F, Rinzin C (1994) SVC placement using critical modes of voltage instability. IEEE Trans Power Syst 9(2):757–763CrossRef
29.
Zurück zum Zitat Kundur P (1994) Power system stability and control. McGraw-Hill, New York Kundur P (1994) Power system stability and control. McGraw-Hill, New York
30.
Zurück zum Zitat Farsangi MM, Nezamabadi-Pour H, Song YH, Lee KY (2007) Placement of SVCs and selection of stabilizing signals in power systems. IEEE Trans Power Syst 22(3):1061–1071CrossRef Farsangi MM, Nezamabadi-Pour H, Song YH, Lee KY (2007) Placement of SVCs and selection of stabilizing signals in power systems. IEEE Trans Power Syst 22(3):1061–1071CrossRef
31.
Zurück zum Zitat Yuan Y, Cheng L, Sun Y, Li G (2008) Placement of SVCs and selection of stabilizing signals based on observability and controllability. In: Power and energy society general meeting conversion and delivery of electrical energy in the 21st century, pp 1–7 Yuan Y, Cheng L, Sun Y, Li G (2008) Placement of SVCs and selection of stabilizing signals based on observability and controllability. In: Power and energy society general meeting conversion and delivery of electrical energy in the 21st century, pp 1–7
32.
Zurück zum Zitat Zhao Q, Jiang J (1995) Robust SVC controller design for improving power system damping. IEEE Trans Power Syst 10(4):1927–1932CrossRef Zhao Q, Jiang J (1995) Robust SVC controller design for improving power system damping. IEEE Trans Power Syst 10(4):1927–1932CrossRef
33.
Zurück zum Zitat Martins N, Lima LT (1990) Determination of suitable locations for power system stabilizers and static var compensators for damping electromechanical oscillations in large scale power systems. IEEE Trans Power Syst 5(4):1455–1469CrossRef Martins N, Lima LT (1990) Determination of suitable locations for power system stabilizers and static var compensators for damping electromechanical oscillations in large scale power systems. IEEE Trans Power Syst 5(4):1455–1469CrossRef
34.
Zurück zum Zitat De Oliveira SE (1994) Synchronizing and damping torque coefficients and power system steady-state stability as affected by static VAR compensators. IEEE Trans Power Syst 9(1):109–119CrossRef De Oliveira SE (1994) Synchronizing and damping torque coefficients and power system steady-state stability as affected by static VAR compensators. IEEE Trans Power Syst 9(1):109–119CrossRef
35.
Zurück zum Zitat Sauer PW, Pai MA (1998) Power system dynamics and stability. Prentice-Hall, Upper Saddle River Sauer PW, Pai MA (1998) Power system dynamics and stability. Prentice-Hall, Upper Saddle River
36.
Zurück zum Zitat Karpagam N, Devaraj D, Subbaraj P (2010) Improved fuzzy logic controller for SVC in power system damping using global signals. Electr Eng 91(7):395–404CrossRef Karpagam N, Devaraj D, Subbaraj P (2010) Improved fuzzy logic controller for SVC in power system damping using global signals. Electr Eng 91(7):395–404CrossRef
37.
Zurück zum Zitat Mathur RM, Varma RK (2002) Thyristor-based FACTS controllers for electrical transmission systems. Wiley-IEEE Press, New YorkCrossRef Mathur RM, Varma RK (2002) Thyristor-based FACTS controllers for electrical transmission systems. Wiley-IEEE Press, New YorkCrossRef
38.
Zurück zum Zitat IEEE Special Stability Controls Working Group (1994) Static Var compensator models for power flow and dynamic performance simulation. IEEE Trans Power Syst 9:229–240 IEEE Special Stability Controls Working Group (1994) Static Var compensator models for power flow and dynamic performance simulation. IEEE Trans Power Syst 9:229–240
39.
Zurück zum Zitat (2005) PSS/E 30.2 Progrm Operational Manual, 2nd edn (2005) PSS/E 30.2 Progrm Operational Manual, 2nd edn
40.
Zurück zum Zitat Laufenberg MJ, Pai MA, Padiyar KR (1997) Hopf bifurcation control in power systems with static var compensators. Int J Electr Power Energy Syst 19(5):339–347CrossRef Laufenberg MJ, Pai MA, Padiyar KR (1997) Hopf bifurcation control in power systems with static var compensators. Int J Electr Power Energy Syst 19(5):339–347CrossRef
41.
Zurück zum Zitat (1995) The use of observability and controllability gramians or functions for optimal sensor and actuator location in finite dimensional systems. In; Proceedings of the 34th IEEE conference on decision and control, pp 3319–3324 (1995) The use of observability and controllability gramians or functions for optimal sensor and actuator location in finite dimensional systems. In; Proceedings of the 34th IEEE conference on decision and control, pp 3319–3324
42.
Zurück zum Zitat Georges D (2014) Optimal PMU-based monitoring architecture design for power systems. Control Eng Pract 30:150–159CrossRef Georges D (2014) Optimal PMU-based monitoring architecture design for power systems. Control Eng Pract 30:150–159CrossRef
43.
Zurück zum Zitat Farsangi MM, Song YH, Lee KY (2004) Choice of FACTS device control input for damping inter-area oscillations. IEEE Trans Power Syst 19(2):1135–1143CrossRef Farsangi MM, Song YH, Lee KY (2004) Choice of FACTS device control input for damping inter-area oscillations. IEEE Trans Power Syst 19(2):1135–1143CrossRef
44.
Zurück zum Zitat Skogestad S, Postlethwaite I (2007) Multivariable feedback control: analysis and design. Wiley, New YorkMATH Skogestad S, Postlethwaite I (2007) Multivariable feedback control: analysis and design. Wiley, New YorkMATH
45.
46.
Zurück zum Zitat Hać A, Liu L (1993) Sensor and actuator location in motion control of flexible structures. J Sound Vib 167(2):239–261CrossRefMATH Hać A, Liu L (1993) Sensor and actuator location in motion control of flexible structures. J Sound Vib 167(2):239–261CrossRefMATH
47.
Zurück zum Zitat Leleu S, Abou-Kandil H, Bonnassieux Y (2001) Piezoelectric actuators and sensors location for active control of flexible structures. IEEE Trans Instrum Meas 50(6):1577–1582CrossRef Leleu S, Abou-Kandil H, Bonnassieux Y (2001) Piezoelectric actuators and sensors location for active control of flexible structures. IEEE Trans Instrum Meas 50(6):1577–1582CrossRef
48.
Zurück zum Zitat Moore BC (1981) Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans Autom Control 26(1):17–32MathSciNetCrossRefMATH Moore BC (1981) Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans Autom Control 26(1):17–32MathSciNetCrossRefMATH
49.
Zurück zum Zitat Sanchez-Gasca JJ, Chow JH, Galarza R (1995) Reduction of linearized power systems for the study of interarea oscillations. In: Proceedings of the 4th IEEE conference on control applications, pp 624–630 Sanchez-Gasca JJ, Chow JH, Galarza R (1995) Reduction of linearized power systems for the study of interarea oscillations. In: Proceedings of the 4th IEEE conference on control applications, pp 624–630
50.
Zurück zum Zitat Hahn J, Edgar TF (2002) An improved method for nonlinear model reduction using balancing of empirical gramians. Comput Chem Eng 26(10):1379–1397CrossRef Hahn J, Edgar TF (2002) An improved method for nonlinear model reduction using balancing of empirical gramians. Comput Chem Eng 26(10):1379–1397CrossRef
51.
Zurück zum Zitat Hahn J, Edgar TF (2002) Balancing approach to minimal realization and model reduction of stable nonlinear systems. Ind Eng Chem Res 41(9):2204–2212CrossRef Hahn J, Edgar TF (2002) Balancing approach to minimal realization and model reduction of stable nonlinear systems. Ind Eng Chem Res 41(9):2204–2212CrossRef
52.
Zurück zum Zitat Hahn J, Edgar TF, Marquardt W (2003) Controllability and observability covariance matrices for the analysis and order reduction of stable nonlinear systems. J Process Control 13(2):115–127CrossRef Hahn J, Edgar TF, Marquardt W (2003) Controllability and observability covariance matrices for the analysis and order reduction of stable nonlinear systems. J Process Control 13(2):115–127CrossRef
53.
Zurück zum Zitat Pai MA (1989) Energy function analysis for power system stability. Springer, BerlinCrossRef Pai MA (1989) Energy function analysis for power system stability. Springer, BerlinCrossRef
54.
Zurück zum Zitat 421.5-2005 (2006) IEEE recommended practice for excitation system models for power system stability studies. IEEE Standard 1–85 421.5-2005 (2006) IEEE recommended practice for excitation system models for power system stability studies. IEEE Standard 1–85
55.
Zurück zum Zitat Singh SN, David AK (2001) A new approach for placement of FACTS devices in open power markets. IEEE Power Eng Rev 21(9):58–60CrossRef Singh SN, David AK (2001) A new approach for placement of FACTS devices in open power markets. IEEE Power Eng Rev 21(9):58–60CrossRef
56.
Zurück zum Zitat DörIer F, Jovanovic MR, Chertkov M, Bullo F (2014) Sparsity promoting optimal wide-area control of power networks. IEEE Trans Power Syst 29(5):2281–2291 DörIer F, Jovanovic MR, Chertkov M, Bullo F (2014) Sparsity promoting optimal wide-area control of power networks. IEEE Trans Power Syst 29(5):2281–2291
57.
Zurück zum Zitat Hiskens I (2006) Significance of load modeling in power system dynamics. In: x symposium of specialists in electric operational and expansion planning Hiskens I (2006) Significance of load modeling in power system dynamics. In: x symposium of specialists in electric operational and expansion planning
58.
Zurück zum Zitat Sun Y, Zhang Y, Wang Y (2015) Research on the fault coefficient in complex electrical engineering. Appl Sci 5(3):307–319CrossRef Sun Y, Zhang Y, Wang Y (2015) Research on the fault coefficient in complex electrical engineering. Appl Sci 5(3):307–319CrossRef
Metadaten
Titel
A novel approach for determining optimal number and placement of static var compensator device to enhance the dynamic performance in power systems
verfasst von
Van Dai Le
Xinran Li
Peiqiang Li
Cao Quyen Le
Publikationsdatum
29.07.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 3/2018
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-017-0598-z

Weitere Artikel der Ausgabe 3/2018

Electrical Engineering 3/2018 Zur Ausgabe

Neuer Inhalt